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Abstract
Get/Put Key-Value Stores (KVSes) rely on replication proto-
cols to enforce consistency and guarantee availability. To-
day’s modern hardware, with manycore servers and RDMA-
capable networks, challenges the conventional wisdom on
protocol design. In this paper, we investigate the impact of
modern hardware on the performance of strongly-consistent
replication protocols.
First, we create an informal taxonomy of replication pro-

tocols, based on which we carefully select 10 protocols for
analysis. Secondly, we present Odyssey, a framework tai-
lored towards protocol implementation for multi-threaded,
RDMA-enabled, in-memory, replicated KVSes. We imple-
ment all 10 protocols over Odyssey, and perform the first
apples-to-apples comparison of replication protocols over
modern hardware.
Our comparison characterizes the protocol design space,

revealing the performance capabilities of different classes
of protocols on modern hardware. Among other things, our
results demonstrate that some of the protocols that were
efficient in yesterday’s hardware are not so today because
they cannot take advantage of the abundant parallelism and
fast networking present in modern hardware. Conversely,
some protocols that were inefficient in yesterday’s hardware
are very attractive today. We distill our findings in a concise
set of general guidelines and recommendations for protocol
selection and design in the era of modern hardware.

CCSConcepts: •Computer systems organization→Cloud
computing; Reliability; Availability; • Software and its en-
gineering → Consistency.

Keywords: Fault-tolerant; Replication; Consistency; Avail-
ability; Throughput; Latency; Linearizability; RDMA

1 Introduction
Online services and cloud applications replicate their datasets
to remain available in the face of faults. Reliable replication
protocols are deployed to maintain consistency among the
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replicas. This work focuses on the performance of strongly-
consistent, fault-tolerant replication protocols for Get/Put
Key-Value Stores deployed within the datacenter.

The performance of replication protocols has been repeat-
edly evaluated on various deployments over the years [1].
However traditional protocol design and evaluation has not
taken into account modern hardware. What do we mean by
modern hardware, and why is it important when comparing
the performance of protocols?

Over the last 10-15 years, the server-grade hardware land-
scape has changed drastically [8]. Servers with two or four
cores per chip have given way to many-core chips with tens
of cores, kernel-based 1 Gbps networking has given way to
user-level networking with 10s or 100s of Gbps and finally,
main memory has been scaled to 100s of GBs with 10s of
Gbps worth of bandwidth. These advances challenge the
conventional wisdom on protocol design in two ways.

Firstly, to benefit from the significant increase in hardware-
level parallelism across compute, network, and memory, pro-
tocols must be multi-threaded. Indeed, a single-threaded pro-
tocol not only fails to utilize the available cores in a many-
core system, but also the available network and memory
bandwidth [30, 44].
Problematically, traditional protocol design has seldom

considered threading; rather it has typically assumed that
each node consists of a single serial process. For instance,
a leader-based protocol specification typically assumes and
often relies on the fact that the leader executes serially. Unsur-
prisingly, designing protocols without considering threading
often results in non-scalable protocols.

The second aspect of protocol design challenged by mod-
ern hardware is the need (or the lack thereof) for optimizing
around themillisecond I/O speed. Specifically, protocols have
traditionally been designed to: 1) reduce the number of mes-
sages per request and 2) avoid random memory look-ups
which could result in disk accesses. Achieving these prop-
erties at the cost of thread-scalability or load balancing has
been considered to be an acceptable trade-off. The reason-
ing is simple: in yesterday’s world, either of these actions
costs milliseconds and can therefore skyrocket the request’s
latency, resulting in user dissatisfaction and violations of the
service-level agreements.
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This is no longer the case, however. The hefty increase
in main memory capacity has catalyzed the advent of in-
memory databases [44, 46]; randomly accessing a memory
object is now a nanosecond operation. Similarly, with mod-
ern, user-space and hardware-offloaded networking (e.g.,
RDMA), sending a message is a microsecond action [13].
Therefore, in the modern era, the protocol designer no longer
needs to sacrifice properties such as thread-scalability or load
balance in order to decrease latency.
In fact, in the modern era we argue that the opposite is

true: in order to optimize latency, one should actually priori-
tize thread-scalability and load balance. Here is why. With
networking and memory accounting for a few microseconds,
the request latency does not typically exceed a few tens of mi-
croseconds on a lightly loaded system. Therefore, to ensure
microsecond latency, we need only ensure that the system is
not overloaded. This calls for high-throughput protocols as
they are less likely to be overloaded by the target throughput.
To maximize throughput, thread-scalability and load balance
should be prioritized over traditional metrics such as number
of messages per request. Our evaluation corroborates this
hypothesis (§ 6).
Research questions. Thus far, we have argued that modern
hardware has challenged conventional wisdom on protocol
performance. How do protocols proposed in the literature
perform on modern hardware? If one wishes to design a new
protocol, what are the best practices one should adhere to?

In order to provide the answers we set out to evaluate and
compare strongly-consistent replication protocols deployed
on modern hardware over a state-of-the-art replicated Key-
Value Store. Below we analyze the challenges in performing
this study, how we tackle them and finally the contributions
of this paper.
A taxonomy for protocol selection (§3). Firstly, it is nei-
ther feasible nor tractable to meaningfully compare every
single proposed protocol. We must therefore select a few rep-
resentative protocols that capture the design space, allowing
us to extrapolate their results to the rest. To this end, we
first develop a taxonomy of existing protocols, classifying
them into four classes based on their operational patterns
(Section 3). To understand the performance of the different
classes of protocols, we carefully select ten protocols for
analysis: ZAB [25], Multi-Paxos [39], CHT and multi-leader
CHT [10], CRAQ [62], Derecho [26], Classic Paxos (CP) [36],
All-Aboard Paxos [23], ABD [48] and Hermes [33].
Odyssey: building protocols in themodern era (§4). The
second challenge is facilitating an apples-to-apples compari-
son that extracts maximum performance from each of these
protocols on modern hardware. To overcome this challenge,
we present Odyssey, a framework tailored towards proto-
col implementation for multi-threaded, RDMA-enabled, in-
memory, replicated KVSes. Specifically,Odyssey provides the
functionality to perform all the non-protocol-specific tasks,

such as initializing and connecting the nodes, managing the
KVS and sending/receiving RDMA messages. These tasks
can account for up to 90% of the codebase for the replication
protocol, requiring domain-specific knowledge in network-
ing and KVSes.With these tasks out of the way, the developer
can focus on coding solely the protocol-specific components,
significantly accelerating the development process, while
also producing more reliable code. We implement all ten pro-
tocols on top of Odyssey.
Comparison results (§ 6). We answer the questions posed
earlier by analyzing the results of our comparison of ten
strongly-consistent replication protocols implemented over
Odyssey. Firstly, we characterize the performance capabilities
of each class of protocols along with its possible optimiza-
tions. This characterization allows us to provide an informed
recommendation to those who seek to deploy an existing
protocol, based on their needs. Secondly, the characteriza-
tion reveals the relative importance and performance impact
of properties such as thread-scalability, load balance, and
the work-per-request ratio (i.e., the total cpu, network and
memory resources required to complete a single request). By
analyzing the effect of modern hardware on how such prop-
erties impact performance, we hope to inform the decisions
of the protocol designer and steer the research community
towards a more hardware-aware discussion.
Limitations. This work investigates the performance of
strongly-consistent, fault-tolerant replication protocols for
Get/Put replicated KVSes deployed within the datacenter.
Note the limitations. We focus on strongly consistent pro-
tocols and not on weaker consistency models. We focus on
reads and writes but not transactions. We assume a local
area network and not geo-replication. Finally, we quantify
the performance but not the availability guarantees of these
protocols. (However, Section 3.6 discusses the qualitative
impact of design decisions on availability.)
Contributions. Summarizing, this work presents the fol-
lowing contributions.
• We present a taxonomy of strongly-consistent replication
protocols based on their operational patterns (§3).

• We introduceOdyssey, a framework that allows developers
to easily design, measure and deploy replication protocols
over modern hardware (§4).

• To the best of our knowledge, this paper presents the first
ever implementation and evaluation of All-Aboard Paxos,
CHT and CHT-multi-leader.

• Using Odyssey, we implement and evaluate ten protocols
that span the design space of strongly-consistent proto-
cols, presenting the first apples-to-apples comparison over
modern hardware. Our evaluation provides a complete
characterization of the replication protocol design space
and reveals the impact of modern hardware on the perfor-
mance of replication protocols (§6).
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2 Preliminaries

Replicated Key-Value Stores. In order to remain available
in the face of faults, KVSes are replicated (typically across
3 to 7 machines [25]). Note that throughout this paper the
terms machines, servers, nodes and replicas are used inter-
changeably. We assume that clients establish connections
with the replicated KVS through sessions. The order in which
requests appear within a session constitutes the session order.
API.We assume that the KVS provides a Get/Put API, which
we refer to as read/write. Note that writes can be condi-
tional, i.e., they can perform an atomic read-modify-write
(RMW) action on the key. Conditional writes are fundamen-
tally harder to achieve than regular writes [21]. All of our
evaluated protocols can perform conditional writes, except
for multi-writer ABD [48].
Consistency. The protocols we will evaluate all enforce
either one of the following two strong models: Sequential
Consistency (SC) or Linearizability (lin). SC mandates that
reads and writes (across all keys) from each session appear to
take effect in some total order that is consistent with session
order [35]. In addition to SC’s constraints, lin mandates that
each request appears to take effect instantaneously at some
point between its invocation and completion [22]. Note that
throughout this paper we will assume the default guarantee
to be lin, specifying the few cases where guarantees are
downgraded to SC.

3 A Taxonomy of Replication Protocols

This section serves two purposes. First, we present a tax-
onomy of strongly-consistent replication protocols. The tax-
onomy will not only inform our choice of protocols to im-
plement and evaluate, but will also enable us to generalize
the results of each protocol to its respective class. Second,
we describe the operation of various protocols, providing
the background material necessary for the rest of this paper.
Before diving into the taxonomy we first offer three remarks
on the protocols and the corresponding jargon.
Remarks. Firstly, note that a lot of the protocols that we
discuss can also execute transactions. However, this work
will view them solely through the lens of the read/write API,
explaining how each protocol performs a read and a write
to keys stored in the replicated KVS.
Secondly, note that the problem of performing a condi-

tional write in an environment where machines can fail
and network/processing delays are unbounded is equivalent
to asynchronous consensus [21]. This is why some of the
protocols we are studying are known under the umbrella
of “consensus protocols”. However, in this work we cast a
wider net, investigating the sensitivity of performance to
relaxing the fault model or to downgrading the API from
conditional writes to plain writes. For that reason we refer to

Total order Per key order

Leader-
based

Multi-Paxos [39], ZAB [25, 57],
VR [53], APUS [65], DARE [55],

Raft [54], Fast Paxos [38]

CHT [10], FGSMR [47],
WPaxos [2], Primary-backup [3],

CR [63], CRAQ [62],

Decentralized
(Leaderless)

Mencius [49], Derecho [26],
AllConcur [56]

CP [36], RMW-Paxos[59],
CASPaxos[58] Gryff [9],

Generalized Paxos [37], EPaxos [51],
Atlas [14], All-aboard Paxos [23]

ABD [48], Hermes [33]

Table 1: Taxonomy (implemented protocols are in bold)

the protocols discussed in this paper with the general term
“strongly-consistent replication protocols”.

Finally, note that throughout this paper, when we refer to
a “local read”, we refer to an operation that is performed by
a machine that knows it is in the configuration and hence
reads from its local KVS.

3.1 Taxonomy
Our taxonomy is split into four quadrants as shown in Ta-
ble 1 based on two operational patterns: 1) leader-based (L)
vs. decentralized (D) and 2) total order (TO) vs. per-key or-
der (PKO). Consequently, there are four resulting classes of
protocols:
1. LTO: leader-based total order
2. LPKO: leader-based per-key order
3. DTO: decentralized total order
4. DPKO: decentralized per-key order
Total order implies that protocols create a total order of

all writes across all keys and apply them to the KVS in that
order. In contrast, per-key order mandates that protocols
only enforce a total order of writes at a per-key basis. Note
that this does not affect the consistency guarantees; in both
cases, protocols can offer lin. Leader-based protocols utilize
a single node (i.e., a leader) to enforce the ordering of the
writes, while decentralized protocols achieve the same effect
in a distributed manner.
Why choose these two axes to categorize protocols? We

hypothesize that from a performance perspective, protocols
must optimize for three metrics: 1) thread-scalability: the
protocol’s ability to scale with more threads, 2) load-balance:
whether the work required to complete a request is evenly
distributed among all nodes and 3) the work-per-request
ratio: the total cpu, network and memory resources required
to complete a single request.
The classification is derived from the above three met-

rics. Specifically, total order protocols—with or without a
leader—struggle to achieve thread-scalability because ap-
plying writes in order requires coordination between the
threads. Leader-based protocols struggle to achieve load bal-
ance as the leader tends to carry out most of the work re-
quired to execute a write. Both techniques (leader and total
order) help reduce the work-per-request ratio as they pro-
vide an easy way to serialize writes. Conversely, protocols
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that are both per-key and leaderless tend to require a higher
work-per-request ratio because the protocols must do addi-
tional work to serialize writes in a distributed manner. We
will substantiate these claims in our evaluation section (§6).

3.2 Leader-based & Total Order (LTO)
Protocols such as ZAB [25], Multi-Paxos [39] and Raft [54]
serialize all writes at the leader node, creating the total order.
The leader executes the writes by proposing them to the rest
of the nodes (dubbed followers), typically in two broadcast
rounds: a propose round to which followers respond with
an acknowledgement (ack), and a commit round. All nodes
must apply committed writes in their total order.
Reads.Awrite is guaranteed to propagate to only a majority
of nodes. The leader is the only node that is guaranteed to be
in that majority, and thus the only node guaranteed to know
of the latest committed write for any key. As such, the leader
can always read locally. Followers must send their reads to
the leader, querying it for the latest value.
There are two possible relaxations that allow local reads

in follower nodes, too. The first relaxation is to simply forego
linearizability, conceding that reads may not return the latest
write. This is tolerable for LTO protocols, because if writes
are totally ordered, this relaxation downgrades consistency
guarantees only mildly to Sequential Consistency [40]. ZAB
subscribes to this practice.

The second relaxation that allows followers to read locally
is to ensure that every write reaches all followers. Note that
there is a downside in requiring that all writes propagate
to all nodes: even if one node fails, all writes block. We
elaborate in Section 3.6.
Choices. To represent LTO, we implement ZAB and Multi-
Paxos (MP), capturing the difference between local reads
(with relaxed consistency) and linearizable reads that must
be sent to the leader node.

3.3 Leader-based & Per-key Order (LPKO)
Protocols in this class use the leader node to only serialize
writes to the same key. Specifically, all writes are steered to
the leader node, which simply ensures that writes to the
same key are applied in the same order by all replicas. A
typical example of this class is the CHT [10] protocol, where
the leader executes writes in two rounds as described in
the total order class. There are two possible optimizations
protocols can employ.

The first is exemplified by Chain Replication (CR) [63]. In
CR, the leader does not broadcast the writes to the followers;
rather the nodes are organized in a chain, through which
writes propagate from the head of the chain to its tail. The
head node acts as the leader in that all writes have to be
steered to it so that it serializes them. In our evaluation, we
will see how this approach significantly—but not entirely—
alleviates the load balance problem.

The second optimization also tackles load balance, by de-
noting that all nodes are leaders for a subset of the keys.
For example, for a 5-node deployment the key space is par-
titioned five ways, where each node is denoted leader for
only one of the partitions. Notably, this is possible in LPKO—
but not LTO—because the leader need not enforce an order
across all writes.
Reads. LPKO protocols can execute lin reads in the same
manner as LTO protocols. When writes propagate to a ma-
jority of nodes, reads have to be propagated to the leader.
When writes are guaranteed to propagate to all followers,
reads can execute locally in all nodes. CHT and CRAQ [62],
an optimized variant of CR, both subscribe to this approach.
Finally, note that the option to propagate writes to a ma-

jority of nodes but execute reads locally by downgrading
consistency to SC (discussed for LTO) is not available for per-
key order protocols. Reading locally in this case would result
in very weak guarantees (i.e., Eventual Consistency [64]).
Choices. To represent LPKO, we implement three protocols:
CHT, CRAQ and a variant of CHT with multiple leaders,
dubbed CHT-multi-ldr. CHT represents the typical LPKO pro-
tocol, CRAQ captures the CR optimization for load balancing
writes and finally, CHT-multi-ldr captures the optimization
of denoting all nodes as leaders of a partition of the key space.
All three protocols read locally.

3.4 Decentralized Total Order (DTO)
In DTO protocols, the total order of writes is not created in
a central location. Rather, there is typically a predetermined
static allocation of write-ids to nodes. For example, all nodes
know that the writes 0 to 𝑁 − 1 will be proposed and coor-
dinated by node-0, the next 𝑁 writes (i.e., 𝑁 to 2𝑁 − 1) will
be proposed by node-1 and so on. Therefore, each node can
calculate the place of each write in the total order based on
its own node-id, without synchronizing with any other node.
Then, the node broadcasts its writes along with their place
in the total order. Typically a commit message is broadcast
after gathering acks from a majority of the nodes. Crucially,
all nodes must apply the writes in the prescribed total order.
Derecho [26], AllConcur [56] and Mencius [49], all belong
to the DTO class.
Reads. Reads can be executed by allocating slots in the total
order, similarly to writes. Local reads are also possible, either
by downgrading consistency guarantees to SC (similarly to
LTO), or by enforcing that all writes will propagate to all
nodes.
Choices. To represent DTO, we implement and evaluate
Derecho. In order to get the upper bound of the DTO class,
we implement theDerecho variant that executes reads locally,
downgrading consistency guarantees to SC.
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3.5 Decentralized Per-key Order (DPKO)
In the fourth and final quadrant, DPKO protocols agree on
a per-key order of writes in a distributed manner. There is
no central leader—rather any node can propose and coordi-
nate a write. The most prominent example is Classic Paxos
(CP) [36]. Traditionally, CP has been regarded simply as a
way to perform leader election so that Multi-Paxos can start
executing. However, recent proposals [20, 58, 59] have used
CP to reach consensus on which node should be the next to
perform a write at a per key basis.

Notably, CP extracts a steep price: it requires three broad-
cast rounds to complete (propose, accept and commit [23]),
each of which contains considerably more metadata than
any other protocol we have discussed, while responding to
a propose or accept is also very complicated, as there are
various possible responses, depending on the state of other
conflicting ongoing writes. Finally, depending on conflicts,
CP may have to retry an unbounded number of times [17].
The source of CP’s overhead stems from the combina-

tion of three constrains: 1) conflicting writes may be con-
currently executing at all times and 2) it is impossible to
guarantee that a message will always be delivered to all
nodes and 3) writes are conditional (i.e., RMWs). Relaxing
any of the constraints will significantly simplify the problem.
Consequently, there are three approaches to optimize CP,
one for each constraint. The first approach is exemplified
by protocols such as EPaxos [51], Atlas [14] and All-aboard
Paxos [23], which provide a fast path, where consensus can
be achieved after two broadcast rounds (accept and commit),
in the absence of conflicts, using CP as the fallback option
when conflicts do occur.

The second approach is presented by Hermes [33], which,
similarly to CR and CHT, enforces that a message will always
be delivered to all nodes. With this guarantee, performing
a write can be done in two lightweight broadcast rounds
which are roughly equivalent to accept and commit.

Finally, the third approach downgrades the API, offer-
ing plain writes instead of conditional writes. Multi-writer
ABD [48] is a variant of the ABD protocol [5] that exempli-
fies this approach. From now on, we refer to multi-writer
ABD simply as ABD. A write in ABD requires two broadcast
rounds that must reach a majority of nodes.
Reads. In DPKO protocols that do not guarantee that a write
reaches all nodes, there is nomaster copy to read from. There-
fore, to get the most recently committed write, a read must
consult a majority of nodes [11]. The reads should then per-
form a second round to ensure that the write is committed
to a majority of nodes, so that subsequent reads can also
observe it. We refer to this as the ABD-read as it was first
proposed in the original ABD protocol [5]. Notably, if writes
are guaranteed to reach all nodes, reads can be performed
locally.

Availability guarantees
CP, ABD, All-aboard Always available

ZAB, MP
Unavailable for the duration of a

predefined time-out after the leader node fails
Hermes, CRAQ, CHT,
CHT-multi-ldr, Derecho

Unavailable for the duration of a
predefined time-out after any node fails

Table 2: A summary of the availability guarantees of the ten proto-
cols, with up to 𝑓 failures (with 2𝑓 + 1 nodes).

Choices. To represent DPKO we implement and evaluate
four protocols: CP, All-aboard, Hermes and ABD. CP will
provide a baseline. All-aboard shows the limit of CP while
maintaining its availability guarantees. Hermes will show us
the performance gains possible when writes reach all nodes.
ABD will showcase the performance difference between con-
ditional and regular writes.
Notably, instead of All-aboard, we could have selected

EPaxos [51] (or its most recent variant, Atlas [14]). EPaxos
requires that nodes respond to accept messages with recent
conflicting commands. This requires memory, compute and
network resources to store, retrieve, reply and transmit an
unbounded number of conflicting writes. In contrast, All-
aboard is a zero-cost optimization. Specifically, All-aboard
leverages the Flexible Paxos [24] theorem to shave off the
first round (propose) and significantly reduce the size of the
commit round, without incurring a counterweight cost. The
complete specification of our All-aboard implementation
over CP can be found in [19].

3.6 The Impact on Availability
In this section, we discuss the implications of protocol design
choices on the availability guarantees.
CP, All-aboard and ABD offer the highest level of avail-

ability guarantees. Specifically, they assume the possibility
of: 1) non-Byzantine machine and network failures; and 2)
unbounded delays in both processing and networking. Under
these assumptions, as long as 𝑁 /2 + 1 nodes remain alive,
responsive and connected, these three protocols will operate
without interruption, i.e., they will remain available. The rest
of the protocols that we have selected make design choices
that downgrade these availability guarantees.

Specifically, leader-based protocols (ZAB,MP, CRAQ, CHT
and CHT-multi-ldr) will block if the leader becomes unre-
sponsive. Similarly, assuming that writes always reach all
nodes (as in Hermes, CRAQ, CHT, and CHT-multi-ldr) re-
sults in blocking if any node becomes unresponsive. Note
that assuming that writes reach all nodes is a prerequisite for
linearizable local reads. Therefore, lin local reads can only be
implemented at the expense of availability. Finally, Derecho
assumes that every node makes use of their pre-allocated
slots in the total order in a timely manner. If any node is slow
to broadcast new writes, then all nodes will block. Table 2
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provides a brief summary of the availability guarantees of
the ten protocols.
In all the above cases, a failure causes blocking for the

duration of a predefined time-out. Expending this time-out
will trigger a recovery action (e.g., leader election, recon-
figuration etc.). Once recovery is complete, operation can
resume. The unavailability period is the sum of the length
of the time-out plus the latency of the recovery action.
This work provides a detailed performance analysis of

replication protocols without delving into the nuances of
availability. However, having pointed to the choices that
come at the expense of availability, we enable the operator
to select (or design) the protocol that best fits their needs.

4 Odyssey
In this section, we describe Odyssey, a framework that allows
developers to easily design, measure and deploy replication
protocols over modern hardware. Specifically, Odyssey con-
tains libraries to perform, among other things, the follow-
ing: create and pin software threads, initialize and interface
with the KVS, initialize RDMA data structures, exchange
RDMA metadata to connect the servers, send and receive
RDMA messages, initialize and use the RDMA multicast
primitive, detect failures and maintain the configuration,
specify and implement the read/write API (or create traces
for benchmarking) and finally measure the performance of
the system.
All ten of our protocols are implemented over Odyssey.

Therefore, describing Odyssey serves a dual purpose: pre-
senting implementation details of our evaluated protocols
and describing how Odyssey can be used by the community
to design and deploy new protocols.
In the rest of this section we first describe the utility of

Odyssey (§4.1), and then focus on its basic components: the
threading model (§4.2), the Key-Value Store layer (§4.3), the
networking layer (§4.4) and the API (§4.5).

4.1 Utility of Odyssey
The utility of Odyssey is twofold. Firstly, for the purposes
of this paper, it allows us to compare strongly-consistent
replication protocols over modern hardware. Secondly, once
open-sourced, Odyssey can be used to develop new (or old)
protocols over modern hardware. Below, we elaborate on
why Odyssey is necessary to achieve either of these goals.
Protocol comparison. Odyssey facilitates an apples-to-ap-
ples comparison between strongly-consistent replication pro-
tocols over modern hardware: all our protocols use the same
threading model, underlying KVS and networking patterns
and optimizations. However, it is not enough for the com-
parison to be fair; it must also be meaningful. For that, pro-
tocols must be able to stress modern hardware to its limits.
Only then will the protocol inefficiencies be exposed. For

instance, Figure 3a, orders our ten protocols by their single-
threaded performance; this order changes drastically when
multi-threading them in Figure 3b. This is because multi-
threading stresses the hardware, which in turn exposes proto-
col pathologies. The need to stress the hardware necessitates
a framework, such as Odyssey, that targets multi-threaded,
RDMA-enabled, in-memory KVSes.
Development of new protocols. The second purpose of
Odyssey is to accelerate the development and deployment
of replication protocols over modern hardware. Note that in
most of our protocols 80 to 90% of the codebase is devoted to
tasks such as setting up and using the KVS and the RDMA
networking. The challenge is that, while orthogonal to pro-
tocol design, these tasks require intimate domain-specific
knowledge.
To get a taste of what this knowledge entails, let us look

at a specific example of a commonly occurring error when
using RDMA. Assume that an RDMA message that appears
to have been transmitted is never received. Also assume the
developer is wise enough to check the hardware counters
and detects that req_cqe_error has been incremented. In that
case, the developer must know from experience that the most
likely cause for this error is attempting to send a message
from amemory location that has not been registered with the
NIC. Absent that intimate knowledge of the RDMA universe,
the developer would have to make due with the manual’s
enigmatic explanation, that a “completion queue event has
completed with an error” [61].
Odyssey frees the developer from all that cumbersome

complexity allowing them to focus solely on the protocol.
Under the hood, Odyssey uses best practices and optimiza-
tions from different domains to maximize performance.

To get a better sense of Odyssey’s utility, let us consider a
concrete example in the form of Hermes over Odyssey. Was
development accelerated? It took one developer less than 2
working days to develop and test our Odyssey-based Hermes.
Did Odyssey practices help performance? Our Odyssey-based
Hermes enjoys a 20% increase in write throughput, compared
to the open-sourced version. We attribute the increase to
Odyssey’s smart messages (explained in Section 4.4.3).

4.2 Odyssey Threading model
Multi-threading is a necessary step to harness the inherent
parallelism in modern hardware. Here we describe how it is
implemented in Odyssey.
Odyssey sets up a number of threads called workers and

a number of threads called clients. Clients establish connec-
tions with the workers through sessions. Each session rep-
resents an entity (e.g., an external client, or an application
thread), which issues requests (reads and writes) to the sys-
tem. Each worker is typically responsible for a number of
sessions. Workers are independent from each other: a worker
completes each request in isolation and reports completion
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to the corresponding client. The order in which requests ap-
pear within a session constitutes the session order. Requests
are always executed in session order.

This execution model allows Odyssey to uncover all avail-
able parallelism across unrelated requests, i.e., request-level
parallelism. This is necessary in order to take advantage of
the ample parallelism in today’s modern hardware. Specifi-
cally, an Odyssey-based protocol may be working on thou-
sands of request at any given moment, by uncovering the
thread-level parallelism across worker threads, and the ses-
sion-level parallelismwithin aworker thread (as everyworker
is typically responsible for multiple sessions).
Developer effort. Threads are spawned and pinned trans-
parently to the developer. The developer specifies how many
workers and clients are required and provides details on
the system’s resources, so Odyssey knows how to pin the
threads.

4.3 Odyssey Key-Value Store
Odyssey sets up an in-memory KVS in each node, leveraging
the memory capabilities of modern hardware. The KVS is
largely based on MICA [46], (as found in [32]), a state-of-
the-art in-memory KVS tailored for high performance. We
enhance MICA with sequence locks (seqlocks) [34] to allow
for concurrency control. Seqlocks allow reads to execute in
a lock-free manner; writers must spin on the lock variable.
The challenge in providing a KVS as a library is that dif-

ferent protocols may have different requirements from the
metadata stored along with each key. Some protocols may
simply wish to read/write the value, but other protocols
may require to read/write additional metadata. For example,
when executing CP, upon receiving a propose message we
may need to transition the state of the key to proposed.
Developer effort. Odyssey allows the developer to specify
their own data structure to be stored in the value of a key-
value pair. Furthermore, the developer must also specify the
necessary handlers to process application-specific requests
to the KVS. These handlers can be registered with Odyssey to
be called on receiving a message.

4.4 Odyssey Networking
The third core component of Odyssey is its networking layer
which allows it to leverage modern RDMA-enabled networks.
In this section, we we first provide an overview of the net-
working decisions and the effort required by the developer
to use the Odyssey networking library (§4.4.1). Then we look
at generic optimizations that are enabled by default (§4.4.2),
and finally we describe two useful pieces of functionality
that the developer can leverage: smart messages (§4.4.3) and
hardware multicast (§4.4.4).

4.4.1 NetworkingOverview. Odyssey adopts the Remote
Procedure Call (RPC) paradigm over UD Sends. Researchers

have extensively proven that this paradigm comprises the
most efficient and practical design point for modern RDMA-
capable networks [29–32]. Below we provide an overview
of how the networking layer is initialized and how it can be
used to exchange messages.
Developer effort – initialization.The developermust spec-
ify the number and the nature of the logical message flows
they require. In RDMA parlance each flow corresponds to
one queue pair (QP), i.e., a send and a receive queue. For
instance, consider Hermes where a write requires two broad-
cast rounds: invalidations (invs) and validations (vals). Each
worker in each node sets up three QPs: 1) to send and re-
ceive invs, 2) to send and receive acks (for the invs) and 3) to
send and receive vals. Splitting the communication in mes-
sage flows is the responsibility of the developer. To create
the QP for each message flow, the developer simply calls a
Odyssey function, passing details about the nature of the QP.
Developer effort – send and receive. For each QP, Odys-
sey maintains a send-FIFO and a receive-FIFO. Sending re-
quires that the developer first inserts messages in the send-
FIFO via an Odyssey insert function; later they can call a send
function to trigger the sending of all inserted messages. To re-
ceive messages, the developer need only call anOdyssey func-
tion that polls the receive-FIFO. Notably, the developer can
specify and register handlers to be called when calling any
one of the Odyssey functions. Therefore, the Odyssey polling
function will deliver the incoming messages, if any, to the
developer-specified handler.

4.4.2 Optimizations. Let us now overview the network-
ing optimizations that are employed by default in Odyssey.
Firstly, we limit each worker to communicate with only a
single worker in every remote machine. This restriction has
been shown to substantially increase performance by reduc-
ing the pressure on NIC’s hardware (caches and TLB) caused
by networking metadata [18].
Furthermore, Odyssey will always batch messages in the

same network packet when given the opportunity. Batch-
ing more than doubles the performance when messages are
small [18] by amortizing all costs associated with sending
a single packet (i.e., the packet header, DMA transactions,
computation in the CPU, NIC and switch etc.).

Finally, we carefully implement low-level, well-established
RDMA practices such as doorbell batching, inlining and
batched selective signaling. We refer the reader to [6, 30] for
more details on these optimizations.

4.4.3 Smart Messages. In this section, we describe Odys-
sey’s smart messages, i.e., an implementation of acknowl-
edgements (dubbed smart-acks) and commitmessages (dubbed
smart-coms) that can be readily used by the developer.
Smart-acks. A smart-ack acknowledges receiving multiple
messages with a fixed-size payload as long as the received
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messages have consecutive ids. Specifically, a smart-ack spec-
ifies 1) the first message-id it acks and 2) the number of
consecutive message-ids it acks.
We call them “smart” because instead of sending an ack

message for every received message, they batch multiple
acks while keeping the payload fixed. The batching is op-
portunistic, that is, it never waits to fill a quota. In practice
however, smart-acks always carry a batch because batching
is used in all messages, and thus there is always a batch of
messages to be acked.
Smart-coms. The idea is the same: smart-coms commit mul-
tiple writes with a fixed payload, as long as the writes have
consecutive ids. Notably, smart-coms and smart-acks have
great synergy, as commits are often sent after receiving acks.
Developer effort. The developer needs to make sure that
messages are tagged with monotonically increasing ids. In
return, they avoid the effort of implementing acks and com-
mits. Instead, they need only call the Odyssey functions to
create and send the smart messages.
We have found smart messages to be extremely useful:

we have smart-acks in all ten of our protocols, and smart-
coms in six of them. Besides boosting performance, smart
messages significantly accelerate the time to build a protocol.

4.4.4 HardwareMulticast. Most replication protocols re-
quire broadcasting messages in order to communicate a new
write to all replicas. Broadcasts are implemented in Odys-
sey through unicasts. However, Infiniband switches can per-
form a hardware-assisted multicast [7], where the sender
transmits a single packet and the switch then replicates it
and propagates it to all recipients. A packet always specifies
the multicast-group-id that it must be transmitted to. To re-
ceive a multicast, nodes must register in the corresponding
multicast group in the switch.

Odyssey contains a multicast library that will be used un-
der the hood, if the developer specifies that a QP should use
the multicast primitive. In Section 6, we investigate the types
of protocols that can benefit from the hardware multicast.
As far as we know, Odyssey is the first framework to offer
access to the RDMA multicast.

4.5 Odyssey API.
The last component of Odyssey that we will discuss is its
application programming interface (API). Clients call the
Odyssey API to issue requests, without any knowledge of
the protocol that is implemented under the hood. The API
relies on the abstraction of sessions. A client is assigned
a session, which it uses on every call to the Odyssey API.
Odyssey maintains one queue per session, which we call
session reorder buffer (ROB) 1. Client requests are inserted
in the corresponding session ROB, maintaining the order in
1The operation of our session ROBs resembles that of the ROB structures
found at the heart of microprocessors
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Figure 1: An Odyssey machine is composed of worker and client
threads, that interface through the session ROBs.

which they were issued by the client. This order constitutes
the session order. Under the hood, Odyssey statically maps
sessions to workers. The worker that is responsible for a
session picks up its requests and completes them. Figure 1
illustrates this interaction. Upon completing a request, the
worker marks the corresponding ROB entry as completed
and writes back the result (in case of a read or RMW). The
client learns of the request completion by inspecting the
ROB entry. The time at which the client inspects the ROB
entry depends on which flavour of the API was used. Let us
elaborate.

TheOdyssey API offers relaxed reads/writes, release-writes,
acquire-reads, a Fetch-&-Add (FAA), and two variants of
Compare-&-Swap (CAS): a weak variant that can complete
locally if the comparison fails locally, and a strong variant
that always checks remote replicas. The Odyssey API in-
cludes an asynchronous (async) and a synchronous (sync)
function call for every request (similarly to Zookeeper [25]).
Synchronous API . A sync call issues the request and then
blocks polling for the request’s completion. We provide here
the function call that issues a sync relaxed read:
1 sync_read(key_id , val_len , *read_value_ptr ,

↩→session_id)

The programmer provides the key to be read (𝑘𝑒𝑦_𝑖𝑑), the
size of the value in bytes (𝑣𝑎𝑙_𝑙𝑒𝑛), a pointer where the
value should be copied (∗𝑟𝑒𝑎𝑑_𝑣𝑎𝑙𝑢𝑒_𝑝𝑡𝑟 ) and the session id
(𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑖𝑑). The call returns an integer, which, ifnegative,
maps to an error code. Sync calls simplify programming, but
are not very efficient, as the client may need to block for
several microseconds waiting for a request to complete.
Async API . An async call returns immediately before the
request has completed. The client can call a polling function
to find out if the request has been completed. As an example,
we provide here the async relaxed read call:
1 async_read(key_id , val_len , *read_value_ptr ,

↩→session_id)

The call returns an integer, which, if negative, maps to an er-
ror code; otherwise, the returned integer denotes the request
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id that can be used by the client to poll for the request’s com-
pletion. Odyssey provides a range of polling functions, that
typically require a session id and a request id as arguments.
Batched Asynchronous Programming . Despite its per-
formance benefits, the asynchronous API is admittedly quite
cumbersome to program with. For that reason, we make
the following simplification: completed requests can only be
polled in session order, irrespective of the order in which
the worker completes them. This enables the client thread
to issue a batch of requests and then at a later time, poll only
for the last request issued. If the last request is successfully
polled, it guarantees that all preceding requests have been
completed. We found this pattern very natural in porting
code to Odyssey.
Multiple sessions per client thread. A client thread can
use multiple sessions to improve performance: enabling
thread-level parallelism across the workers, and session-
level parallelism within one worker thread. Programmers
can leverage this feature to parallelize their applications, by
allocating parallelizable tasks to different sessions. We lever-
age this capability when porting lock-free data structures
to Odyssey for Kite [20], in order to allow clients threads to
work on multiple distinct operations concurrently, through
different sessions.
Session ROB. Session ROBs constitute the communication
medium between client and worker threads. There can be
thousands of sessions ROBs (one per session), where each
session maps to exactly one client and one worker thread.
Therefore, any given session ROB can only be accessed by
one worker and one client. We focus on one slot of a single
session ROB. The slot’s fields are illustrated in Figure 2a. The
client fills the fields of the slot to issue a request, and the
worker uses the fields to complete the request. For instance,
on a CAS request the worker writes the result in the rmw
result field. If the CAS is unsuccessful, the worker also writes
the read value in the address pointed to by the read value ptr
field.
Request FSM. An ROB slot contains a state variable, which
is used to facilitate the synchronization between worker and
client. The state variable works as an Finite State Machine
(FSM) (Figure 2b), transitioning between four possible states,
denoting who can access the slot. A client issues a request
to the slot only if the state is Invalid; transitioning the state
to Active, which implicitly passes the ownership of the slot
to the worker thread. The worker will transition the slot to
In-progresswhen it begins executing it and later to Completed
when it completes it.

5 Infrastructure and workload
We conduct our experiments on a cluster of 5 servers inter-
connected via a 12-port Infiniband switch (MellanoxMSX6012F-
BS). Each machine runs Ubuntu 18.04 and is equipped with

Completed Active

In-Progress

Invalid

b) The FSM of the state field

a) A single slot of a session 

opcode
value 
lengthkey-hash

read value 
ptr 

write value 
ptr rmw resultstate Completed Active

In-Progress

Invalid

Client 

issues request

W
or

ke
r p

ol
ls

th
e 

re
qu

es
tW

orker

com
pletes the 

request

Clie
nt

 p
ol
ls

th
e 

re
sp

on
se

Figure 2: The fields of one slot of one session ROB, and the FSM of
the state field.

two 10-core CPUs (Intel Xeon E5-2630v4) with two hardware
threads per core, reaching a total of 40 hardware threads.
Furthermore each machine has 64 GB of system memory
and a single-port 56Gb Infiniband NIC (Mellanox MCX455A-
FCAT PCIe-gen3 x16). We disable turbo-boost, pin threads
to cores and use huge pages (2 MB) for the KVS.

Our experiments use a uniform read/write trace, which is
created on each run and is kept in-memory. The KVS consists
of one million key-value pairs, which are replicated in all
nodes. We use keys and values of 8 and 32 bytes, respectively.

6 Evaluation
In this section, we analyze the performance of the ten proto-
cols that we have implemented over Odyssey. We start the
discussion by providing a high-level overview of the key
insights of this evaluation (§6.1). Then we individually ana-
lyze the performance of each class of protocols (§6.2 -§6.5)
and finally, we elaborate on the performance impact of the
hardware multicast primitive (§6.5).

6.1 Overview
First, we briefly describe Figure 3 and Table 3 and then an-
alyze our key insights and provide general directives and
recommendations.
Figure 3. Figure 3 shows the throughput of all protocols in
million requests per second (M.reqs/s), ordering the protocols
in ascending throughput order. Specifically, Figure 3a and
3b show the write throughput of the protocols when they
are single-threaded and multi-threaded (default scenario),
respectively. Finally, Figure 3c shows the throughput (multi-
threaded), with 95% reads.
Note the following three remarks for Figure 3. Firstly,

both the x-axis and y-axis are different in all three graphs.
Crucially, protocols in the x-axis are ordered in ascending
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Figure 3: Throughput comparison of all protocols in M.reqs/s. Note that both the x-axes and y-axes are different in each graph.

throughput order. Secondly, MP and ZAB are the same pro-
tocol in the write-only workload, i.e., in Figure 3a and 3b,
because they only differ in the execution of reads. Third and
final, note that there is a protocol called CHT-mcast: this is
the CHT protocol with the hardware multicast enabled. We
show its performance separately because it performs signifi-
cantly better than CHT. Enabling the multicast in the rest of
the protocols has a very small impact.
Table 3. The left-hand side of Table 3 shows the throughput
in M.reqs/s of all protocols when varying the write ratio. The
right-hand side shows the latency (99th / average) of all pro-
tocols in microseconds at 100% write ratio, while varying the
load of the protocol (i.e., with respect to peak throughput).
Let us now summarize the key insights from this study.
1. Total order is not thread-scalable. Protocols that apply
writes in a total order are not thread-scalable: the relative
positions of ZAB, MP (LTO), and Derecho (DTO) in Figure 3a
and Figure 3b demonstrate this point. The reason is that ex-
plicitly enforcing total order mandates that threads can only
apply writes to the KVS in lock-step. In contrast, protocols
that enforce per-key order (LPKO and DPKO) can scale well
with more threads.
2. The leader jeopardizes load balance. The adverse ef-
fect of the leader on load balance is not apparent in LTO pro-
tocols because they cannot scale enough to uncover it. How-
ever it is visible in LPKO protocols. Specifically, CHT does
not scale well when multi-threaded because the send side of
the leader becomes the bottleneck. There are two protocol-
level optimizations that restore load balance: propagating
writes through a chain (i.e., CRAQ) and using multiple lead-
ers (i.e., CHT-multi-ldr).
3. Hardware multicast is effective for LPKO. The hard-
ware multicast primitive can make a huge difference, but
only in LPKO protocols. Specifically, the hardware multicast
primitive provides a 3x benefit for CHT, i.e., CHT-mcast. The
benefit for the rest of the protocols is very small, typically
around 5%. The reason is that the multicast only relieves load
on the send side of the node that performs the broadcast: it
reduces the number of messages sent, but not the number

of messages received. Therefore, multicast is extremely use-
ful for leader-based protocols that are bottlenecked by the
send bandwidth of the leader. It is not so useful for already
well-balanced protocols (i.e., DTO and DPKO), while LTO
protocols do not benefit, as they are already bottlenecked by
thread-scalability. We will expand in Section 6.4.
4. DPKO excels when multi-threaded. In the absence of
a leader or a total order, DPKO protocols must find creative
ways to serialize writes in a decentralized manner. On the
one hand, this invites a level of complexity that has an ad-
verse affect on the work-per-request ratio. This is portrayed
by the single-threaded performance of CP and All-Aboard,
which is the lowest among all protocols. On the other hand,
the decentralized nature of these protocols makes them nat-
urally thread-scalable and load balanced. This is why multi-
threading yields a ∼9-10x throughput improvement. Notably,
by downgrading the availability guarantees, as in Hermes,
or downgrading the API, as in ABD, it is possible reduce the
work-per-request ratio.
5. Thread-scalability > load balance >work-per-request.
From Figure 3b, we observe that the non-thread-scalable
protocols, ZAB, MP and Derecho are the worst perform-
ers, rendering thread-scalability the most critical property
to honour in the modern era. Furthermore, All-Aboard, a
protocol with a very high work-per-request ratio, signifi-
cantly outperforms CHT, which sacrifices load balance, even
though CHT offers lower availability guarantees (discussed
in §3.6). From that we concur that it is preferable to optimize
for load balance rather than work-per-request ratio. At the
limits of the work-per-request ratio (i.e., in CP), the two met-
rics appear equally important, as CHT and CP are roughly
matched.
6. Local reads are great but with caveats. Recall that MP
performs reads by sending them to the leader. CP, All-aboard
and ABD perform ABD-reads (typically 1 broadcast round).
The rest perform reads locally. From Figure 3c, we see that
there is a big gap between protocols with local reads and
the rest, which perform them remotely. However there are a
couple of caveats. Firstly, local reads always come at a cost
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as they downgrade either the consistency or the availability
guarantees, as we saw in Section 3.6. Furthermore, note that
ZAB, even though it performs its reads locally, is on par with
the protocols that perform reads remotely. This is because
it is bottlenecked by its write throughput. We elaborate in
Section 6.2.
7. For better latency, choose throughput. In the Intro-
duction, we hypothesized that a request’s latency should not
exceed a few tens of microseconds in a lightly loaded system.
Furthermore, we argued that to ensure a low latency, we
should favour high-throughput protocols. The latency mea-
surements for 25% load in Table 3 verify that at a light load, all
protocols incur a latency of a few tens of microseconds. Fur-
thermore, we observe that for all protocols, as load increases
so does latency, with a big spike at 100% load. Therefore, to
maintain a latency of a few tens of microseconds, one should
favour high-throughput protocols, as they will be less likely
to be overloaded when operating on the target throughput.
Summary – Recommendations. Based on our insights,
we first provide some general directives on protocol design
and then offer recommendations on choosing a protocol.
General Directives.
• Prioritize thread-scalability, then load-balance and then
the work-per-request ratio.

• Total order should be avoided in read/write systems.
• Leader-based protocols can achieve high-performance, but
care must be taken to ensure load balance.

• It is worth investing in the hardware multicast primitive
only in the case of LPKO protocols.

• Local reads can deliver great performance, but it’s not
guaranteed.

• In order to minimize latency, choose protocols with high
throughput.

Recommendations
• All-aboard is the most attractive design point for a sce-

nario where: 1) availability is the most important concern
and 2) conditional writes are required.

• If simple writes will do, then we recommend ABD.
• If a small window of unavailability on a failure is tolerable,
then Hermes is the best candidate, while CHT-multi-ldr
and CRAQ are good alternatives.

6.2 LTO: ZAB and Multi-Paxos
In this section, we first briefly describe the operation of
our two implemented LTO protocols: ZAB and Multi-Paxos
(MP). Then we focus on their results, first discussing thread-
scalability for write throughput, and then the throughput
when varying the write ratio.
ZAB & MP operation. All writes must be propagated to
the leader which executes them in two broadcast rounds: a

Throughput vs. Write ratio Latency vs. Load
0% 1% 5% 20% 50% 75% 100% 25% 50% 75% 100%

ZAB 967 276 102 47 23.5 16.5 14 22 / 16 30 / 23 40 / 32 110 / 95

MP 170 100 51 33 22 16 14 22 / 16 30 / 23 40 / 32 110 / 95

Derecho 967 445 235 79 33 22 16.6 16 / 13 24 / 19 32 / 27 94 / 86

CP 125 115 90 65 44 35 27 38 / 26 40 / 33 56 / 47 216 / 163

CHT 967 755 520 134 53 36 28 16 / 16 24 / 19 38 / 31 282 / 209

All-Aboard 125 116 92 70 51 42 39 24 / 18 38 / 27 58 / 40 252 / 167

ABD 125 118 102 84 71 64 61 28 / 26 34 / 33 52 / 47 138 / 163

CRAQ 967 739 476 246 123 87 67 34 / 22 48 / 30 58 / 37 242 / 138

CHT-multi-ldr 967 674 443 192 134 97 76 30 / 19 82 / 58 86 / 59 554 / 323

CHT-mcast 967 745 524 277 145 105 85 20 / 14 24 / 16 40 / 26 210 / 147

Hermes 967 735 515 275 150 107 89 18 / 13 24 / 15 36 / 22 110 / 78

Table 3: Left-hand side: Throughput in M.reqs/s varying the write
ratio. Right-hand side: 99th percentile and average latency (99th/
avg) in 𝜇seconds varying the load in a write-only workload.

prepare round and a commit round. The difference between
ZAB and MP is in reads. ZAB executes reads locally down-
grading consistency guarantees to SC. MP offers lin, and so,
all reads are sent to the leader.
Thread-scalability. The thread-scalability problem occurs
when the different workers, either in the leader or the fol-
lowers, try to apply the writes to the KVS. For example, the
write with write-id = 200 (i.e., write-200), can only be applied
after write-199 has been applied. If worker-0 is responsible
for applying write-200, but not write-199, then worker-0
must wait until the worker responsible for write-199 applies
it. Therefore the thread-scalability problem rises from the
fact that workers can only apply their writes to the KVS in
lock-step. Figure 4a shows the write-only throughput of ZAB
and MP when varying the number of threads (i.e., workers).
Scaling saturates at four workers. When deployed with more
than 10 workers, the performance drops because the addi-
tional workers are pinned to the second socket of the server,
hindering inter-thread communication.
Throughput when varying the write ratio. Figure 4b
compares the throughput of ZAB and MP with Derecho,
when varying the write ratio. ZAB’s consistency relaxation
that allows for local reads pays off, as ZAB significantly
outperforms MP in low write ratios.

However, note that ZAB’s write throughput does not scale
well in low write ratios. For instance, at 5% write ratio, ZAB
achieves 102M.reqs/s, whichmeans that its write throughput
is roughly 5million per sec. Ideally, since local reads are fairly
cheap, one might expect that ZAB should have been able to
maintain its peak write throughput (14m at 100% write ratio)
at lower write ratios. Note that Derecho maintains its 16.6m
write throughput at both 75% write ratio and 50% write ratio.
Derecho is able to sustain its write throughput better due
to its decentralized nature and thus outperforms ZAB in
lower write ratios. In contrast, in ZAB (and MP), followers
must send their writes to the leader which coordinates their
execution. When decreasing the write ratio, the ability to
batch multiple writes together into network packets and
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Figure 4: Comparing ZAB, MP & Derecho

steer them into the leader is disrupted by the execution of
reads, and so the write throughput cannot be maintained.
Passive followers. In order to examine whether it would
be beneficial to spawn requests only at the leader node, Fig-
ure 4c shows the throughput of ZAB-passive-flr, a ZAB vari-
ant where followers are passive: i.e., followers are not con-
nected with clients and thus do not initiate the execution
of requests. Rather, only the leader initiates requests, while
followers are only used to help coordinate writes. In this case,
MP and ZAB are identical, because in both protocols reads at
the leader can execute locally. ZAB-passive-flr can achieve
the same write throughput as ZAB at 100% write ratio be-
cause all writes must execute at the leader anyway. However,
its performance degrades as reads increase. The reason is
that the single node (i.e., the leader) cannot compete with a
5-node deployment when it comes to executing local reads.
Specifically, followers’ cpu and memory resources must be
utilized to scale at low write ratios. Therefore active follow-
ers that are responsible for client sessions are beneficial. This
result holds for LPKO protocols, too.

6.3 DTO: Derecho
We have already established the effects of the total order in
write throughput and contrasted Derecho with ZAB and MP.
Here we will briefly describe Derecho’s operation and com-
ment on its performance in lower write ratios, contrasting it
with two DPKO protocols.
Derecho operation. In Derecho, writes are totally ordered
and applied in that order. The different write-ids are statically
pre-allocated to different nodes. Node-0 will propose writes
0 to 𝑁 −1, node-1 will propose writes 𝑁 to 2𝑁 −1, and so on.
Furthermore, Derecho performs reads locally, relaxing the
consistency guarantees from lin to SC (similarly to ZAB).
Performance.Without considering thread-scalability, DTO
is a powerful idea as the different nodes need not coordinate
in order to serialize the writes. They merely need to com-
pute the order of their own writes through their node-id and
broadcast them. This is why Derecho is one of the better

performing protocols in single-threaded performance (Fig-
ure 3a). However, as we saw with ZAB and MP, applying
writes in a total order does not scale across many threads.

As discussed in the previous section, Derecho scales better
than ZAB at lower write ratios (Figure 4b); however its low
write throughput still limits its total throughput at low write
ratios. For instance, when compared with Hermes (lin local
reads) and CP (ABD reads) in Figure 5a, Derecho is signif-
icantly outperformed by Hermes even in low write ratios,
because Hermes has a higher write throughput (due to its
thread-scalability), which allows it to scale well at low write
ratios. However, Derecho’s local reads allow it to outperform
CP, on low write ratios, despite the fact that CP has a higher
write throughput.

6.4 LPKO: CHT, CHT-multi-ldr, and CRAQ
We start the discussion of the LPKO protocols with CHT and
then extend it to CRAQ.
CHT operation. All writes in CHT are propagated to the
leader. The leader completes the writes in two broadcast
rounds, similarly to ZAB and MP, with two differences: 1) it
does not create a total order of all writes and 2) it waits until
a write has reached all followers before committing it. The
latter allows for local reads at the follower nodes. Notably,
reads need to block if there is an ongoing write to the same
key, until that write commits.
In CHT-multi-ldr each node is the leader for 1/𝑁 of all

keys, with 𝑁 being the number of nodes. Upon receiving
a write request for key 𝐾 , the worker finds out the leader
for that key through a simple modulo operation on the key.
Then, similarly to CHT, the write is propagated to its leader,
which executes it to completion.
CRAQ operation. CRAQ organizes the nodes in a chain.
All writes are steered to the head of the node, which then
propagates them down the chain. When a write reaches the
tail (i.e., the last node of the chain), it is said to be committed
and an ack propagates back, all the way to the head. On re-
ceiving the ack, nodes commit the write. Reads are executed
locally. As an optimization, reads do not block when there is
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Figure 5: Throughput vs. write ratio

an ongoing write to the same key, but instead are propagated
to the tail. The tail is guaranteed to always know the latest
committed write, because of its position in the chain.
Performance. Firstly, recall that from Figure 3b, we ob-
served that CHT cannot balance the load and is bottlenecked
by the send side of the leader, which saturates its NIC. There
are three possible optimizations: usingmultiple leaders (CHT-
multi-ldr), using a chain (CRAQ), and finally using the hard-
ware multicast primitive (CTH-mcast).

Notably, CRAQ has the lowest impact among the three
techniques, because it does not completely balance the load,
as the tail does not contribute in the propagation of a write.
In our 5-node deployment, the load is split between 4 nodes
which explains why CRAQ reaches only 4/5 of the through-
put of a well-balanced protocol such as CHT-mcast.

CHT-multi-ldr also falls short of CHT-mcast. The reason
is a bit subtler. There is less opportunity to amortize cpu
and network costs in CHT-multi-ldr, because writes need
to be steered to different leaders. For example, assume that
in our 5-node deployment a worker in one of the nodes
receives 5 write requests from a client. Also assume that
each request must be steered to a different leader. The worker
cannot batch all messages to the same packet. Instead, it must
create a packet for each of the writes, sending them to the
different leaders. Furthermore the worker itself may be the
leader for one of the writes, which means it must broadcast
it, again losing the opportunity to batch it with other writes.
Conversely, in vanilla CHT, the worker would simply batch
all writes to the leader.
CHT-mcast enhances CHT with the multicast primitive.

In CHT, the send side of the leader is overloaded, because
the leader broadcasts all writes, and every broadcast requires
N unicasts (for N followers). However, the followers receive
only one message from each broadcast, and thus when the
leader utilizes 100% of its send bandwidth, the followers only
utilize 100/𝑁% of their receive bandwidth.

CHT-mcast improves upon CHT exactly because in CHT
the followers underutilize their receive side. When the mul-
ticast primitive is used, the leader sends one message per
broadcast instead of N. The preexisting underutilization in
the followers’ side allows us to leverage the leeway created

by the multicast at the leader’s send side, to send more writes
to the followers. Had there been no room in the receive side
of the followers, the multicast would simply reduce the band-
width used at the leader send side, without improving per-
formance. In fact this is exactly what happens for most of
the broadcasting protocols (ABD, Hermes, CHT-multi-ldr,
Derecho). Notably, ZAB and MP, even though leader-based,
are not scalable enough to tap into the multicast’s benefits.
In Section 6.6, we elaborate on the impact of the hardware
multicast primitive, examining in depth how it affects proto-
cols.
Figure 5b shows the throughput of CHT-multi-ldr, CHT

and CRAQ when varying the write ratio. Firstly note that
CHT outperforms the other two for low write ratios. This
is because 1) CHT has a smaller work-per-request ratio and
2) CHT is not bottlenecked by the leader’s send side at low
write ratios. CHT’s work-per-request ratio is smaller than
CRAQs, because broadcasting writes is more efficient than
propagating them through a chain, as it allows for a better
amortization of compute and network costs. CHT-multi-ldr
has an even higher work-per-request ratio than CRAQ, be-
cause as the write ratio decreases, the opportunity to amor-
tize costs by batching writes reduces, exacerbating its pre-
existing problem. This is why it is outperformed by both
CRAQ and CHT. CHT-mcast scales CHT’s throughput at
high write ratios as it avoids the bottleneck in the leader’s
send side bandwidth. As a result, its throughput is at the
highest level for all write ratios, matching that of Hermes
(Figure 5c).

6.5 DPKO: CP, All-aboard, ABD, and Hermes
Firstly we briefly explain the operation of the protocols and
then discuss their performance.
Operation. In DPKO protocols, each node coordinates its
own writes. An ABD write requires two broadcast rounds.
The first round finds out the version of the key stored in a
majority of nodes and the second sends out the new value.
An ABD read requires one broadcast round with an optional
second. The first round finds out the latest value from a
majority of nodes. If the reader cannot infer from the replies
to its first round that a majority of nodes store this value,
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then it performs a second round to broadcast it. Notably, the
second round is not necessary in more than 99% of the reads.
CP requires three broadcast rounds to complete a write:

propose, accept and commit. All-aboard is an optimization
over CP, allowing a write to commit after two rounds when
there are no conflicts or slow nodes, using CP as a fallback.
Both CP and All-aboard execute reads using ABD reads.
Finally, Hermes requires two broadcast rounds to complete
a write. Its rounds are substantially more light-weight than
CP and All-aboard (and even ABD) but all messages must
always reach all nodes. For that reason, Hermes reads are
local.
Performance. Firstly, from Figure 3a, we observe that CP
has the lowest single-threaded performance. This is because
of the extremely high work-per-request ratio required in CP,
as explained in Section 3.5. However, CP is thread-scalable
and well load balanced, enjoying a 10x improvement when
multi-threaded (Figure 3b) outperforming ZAB,MP andDere-
cho and matching CHT.

The All-aboard optimization reduces CP’s high work-per-
request but not completely. This is why All-aboard is the
second worse protocol when single-threaded. Note that All-
aboard has a significantly higher work-per-request ratio than
Hermes and ABD, which also require two broadcast rounds.
This highlights the fact that simply using the number of
broadcast rounds as a metric to gauge performance is not
sufficient. We need to factor in the size of the messages and
the responses along with the complexity to create them.
Similarly to CP, All-aboard scales very well (10x) when

multi-threaded, outperforming CP, CHT and the total order
protocols. Recall from Section 3.6 that CP and All-aboard
are the only two protocols (out of the ten) that can perform
conditional writes while remaining available in the event of a
failure. Therefore, for those keen on offering high availability,
All-aboard comprises a great candidate, as it can also provide
reasonably high performance.

ABD also offers the same levels of availability, but it is the
only protocol out of the ten that cannot perform conditional
writes. This simplification affords ABD a significantly lower
work-per-request ratio than CP and All-aboard, which is why

ABD outperforms CP and All-aboard both single-threaded
and multi-threaded. Figure 6 compares ABD, CP and All-
aboard, varying the write ratio. Notably the read through-
put is equal for all three, as they all implement ABD-reads.
However, as the write ratio increases, ABD outperforms the
other two due to its lower work-per-request ratio for writes.
Therefore, ABD comprises a great candidate, in cases where
high availability is required and simple writes will suffice
(as opposed to conditional writes).

Figure 5c compares ABD with Hermes (and CHT-mcast).
Even though ABD is within a close distance in the write
throughput, there is a big gap in the read throughput, demon-
strating the cost of high availability. Specifically, Hermes
mandates that every write reaches every node. In doing so,
it concedes that all nodes must block on a failure (discussed
in Section 3.6). However, it takes advantage of this conces-
sion in both reads and writes. In reads, by enabling them to
execute locally, leveraging that all nodes have received the
latest committed write. And in writes, by accelerating their
operation, leveraging that a node that performs a write, has
received all concurrent, conflicting writes.
This renders Hermes the better performing protocol out

of all ten, making it an ideal candidate, for those who can
afford an unavailability period in case of a failure.

6.6 Hardware Multicast
In this section, we revisit the performance impact of hard-
ware multicast and specifically, why it provides a 3x benefit
for CHT, but no more than 5% for the rest of the protocols.
The reason is that the multicast only relieves the send side of
a broadcast. Specifically, on a multicast, one packet is sent to
the switch instead of N (assuming N recipients). The switch
then replicates the packet N times, propagating it to all re-
cipients. Without using the multicast primitive, the sender
must send N packets. Let us use Figure 7, to investigate how
multicasting affects CHT and Hermes.

Figure 7 provides a pictorial view of the usage of the send
and receive bandwidth for CHT, CHT-mcast, Hermes and
Hermes-mcast. Firstly note that the figure does not provide
a precise view of the measurements. Rather, it illustrates a
rough approximation that will help us explain why multicast
is helpful in certain scenarios. To simplify further, in this dis-
cussion we will assume that smart-acks and smart-commits
consume zero bandwidth.
In Figure 7a, we see that the CHT leader uses up all of

its send bandwidth. The leader utilizes a small fraction of
its receive bandwidth by receiving followers’ writes. The
receive side of the follower is not well utilized, because it only
receives 1/𝑁 of the messages sent by the leader (assuming
an N-side deployment). The send side of the follower is used
only to propagate writes to the leader.
In Figure 7b we see how CHT is affected when using the

multicast (i.e., when it becomes CHT-mcast). The leader’s
send side is still saturated, but now each packet is only sent

14



Odyssey: The Impact of Modern Hardware on Replication Protocols EuroSys ’21, April 26–28, 2021, Online, United Kingdom

once. Therefore, the leader now sends N times as many dis-
tinct packets. Each follower receives all the packets that the
leader sends, because each packet is getting replicated at the
switch and sent to all followers. Thus the follower’s receive
bandwidth is also saturated. Note that the send side of the fol-
lower is also increased, as the follower now propagates more
packets to the leader. For that reason, the leader’s receive
side is saturated too.
Note the key insight: CHT-mcast improves upon CHT

because in CHT the follower’s receive side is underutilized.
This allows us to leverage the leeway created by the multi-
cast at the leader’s send side by sending more packets to the
followers. Had the follower’s receive side not been underuti-
lized, the multicast would simply reduce the utilization of
the leader’s send side.
This is exactly what happens with Hermes and Hermes-

mcast in Figure 7c and d, which show the network bandwidth
utilization of a Hermes and Hermes-mcast node respectively.
A Hermes node utilizes both the send and receive bandwidth
symmetrically. Employing multicast in Hermes-mcast (Fig-
ure 7d) reduces the utilization of the send bandwidth of every
node. However, this reduction cannot be leveraged to send
more packets –and thus increase throughput – because no
node can receive any more packets.
To understand why CHT-mcast can match the perfor-

mance of Hermes (or Hermes-mcast), let us compare the
send bandwidth of the leader of CHT-mcast and the send
bandwidth of a node in Hermes-mcast. Specifically, the per-
centage of the send bandwidth used by one Hermes-mcast
node is dictated by how much one Hermes-mcast nodes can
receive. For example assume a deployment with 5 nodes,
each of which has 100 Gbps send bandwidth and 100 Gbps
receive bandwidth. Each Hermes-mcast node receives multi-
casts from the rest 4 nodes i.e. it receives 25 Gbps from each
node. This means that any Hermes-mcast node is using 25
Gbps of its send bandwidth, which gets replicated by the
switch to reach all other nodes. All 5 Hermes-mcast nodes
combined can complete 125 Gb worth of new writes every
second. Generalizing, a Hermes-mcast node uses 1/𝑁 − 1
of its send bandwidth and all 𝑁 Hermes-mcast nodes use
𝑁 /𝑁 − 1 of one node’s send bandwidth to multicast new
writes.

On the other hand, CHT-mcast uses the entire send band-
width of a single node – the leader. Therefore, in our 5-node
example, CHT-mcast can complete 100 Gb worth of new
writes every second. Comparing Hermes-mcast with CHT-
mcast, we can infer that Hermes-mcast can, in theory, be
only 𝑁 /𝑁 − 1 times better than CHT-mcast. For instance
in our 5-node deployment, Hermes can outperform CHT-
mcast by up to 25%. Furthermore, in theory Hermes and
Hermes-mcast should have the same performance.

Figure 5c, shows that in practice, because Hermes does not
manage to fully saturate its send bandwidth, CHT-mcast and
Hermes (without multicast) have almost identical behaviour

SEND RECEIVE

a) CHT

b) CHT-mcast d) Hermes-mcast

c) Hermes

SEND RECEIVE

SEND RECEIVE SEND RECEIVE

SEND RECEIVE

SEND RECEIVE

Leader Follower

Leader Follower

Figure 7: An illustration of the send and receive bandwidth of CHT,
CHT-mcast, Hermes and Hermes-mcast

for all write ratios. Finally, the write throughput of Hermes-
mcast (94 M.reqs/s) is around 10% better than CHT-mcast.

7 Related Work

Related Frameworks. Similarly to Odyssey, Paxi [1] offers
a rich interface that enables the fast development of replica-
tion protocols. However, Paxi is neither multi-threaded nor
RDMA-enabled. eRPC [29] is a general-purpose networking
framework offering RDMA-based RPCs, similarly to Odyssey.
However, Odyssey also provides functionality tailored for
replication protocols, such as the smart messages (§4.4.3).
The reason we did not use eRPC as the networking layer
of Odyssey, is twofold. First, in eRPC, a broadcast requires
a separate memcpy for each of the messages. In our setup
that would result in multiple GBytes/s worth of unnecessary
memcpying, for almost all protocols. Secondly, eRPC would
not allow us to use the multicast primitive.
Finally, G-DUR [4] is a generic middleware that enables

the developers to implement and evaluate a large family
of distributed transactional protocols. G-DUR focuses on
providing a substrate for transactional protocols that are
based on the Deferred Update Replication (DUR) approach. In
contrast, Odyssey focuses on exploring the impact of modern
hardware in strongly-consistent replication protocols.
Analysis of replication protocols. Ailijiang et al. [1] dis-
sect the performance of strongly-consistent replication pro-
tocols. Their analysis is complimentary to ours, as they fo-
cused on latency and availability on wide-area-networks and
geo-replication, while we focus on performance within the
datacenter and over modern hardware.
Modern Hardware. Odyssey investigates the interplay be-
tween protocol-level design decisions and three advances
that are described as modern hardware: many-core servers,
user-level high-bandwidth networking and high-capacity
main memory. Notably, Szekeres et al. [60] also observe the
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importance of thread-scalability in the era of user-level net-
working, and propose the Zero-Coordination Principle a
guideline to building thread-scalable replicated transactional
storage systems. Furthermore, recent work [16, 27, 28, 41–
43, 66] has investigated the impact of programmable hard-
ware (FPGAs, smart NICs and switches) in deploying storage
systems in the datacenter. Such programmable hardware can
be used to accelerate the replication protocol. We believe
that by uncovering the impact of protocol-level actions on
performance our comparison of protocols can serve as a
starting point for this endeavor, guiding both the selection
of protocols to accelerate and the acceleration process itself.
Skewed workloads. Our evaluation does not investigate
the sensitivity of replication protocols under a skewed work-
load (e.g., zipfian distribution [52]). This is not an oversight.
It is possible to apply an optimization where reads and

writes to the most popular keys (i.e., the “hot keys”) can be
combined within each server by leveraging the fact that: 1)
a server can efficiently keep track of the hot keys [12, 45,
50] and 2) at any given moment, a server is expected to be
working on multiple requests for each of the hot keys. This
optimization turns skew from problem to opportunity. This
is not a surprise: researches have repeatedly observed that
skew is a form of locality, and as such it can be leveraged to
increase performance [15, 18, 43, 45].
Notably, the optimization is equally applicable to all ten

protocols. Consequently, evaluating the protocols without
the optimization would paint a false picture, suggesting that
protocols suffer under skew, when in reality they can thrive
under it. However, the optimization will take a different
shape for each protocol. Therefore, incorporating the opti-
mization to all ten protocols will require substantial research
and we leave it for future work.

8 Conclusion and Lessons Learned
The goal of the paper is to uncover the impact of modern
hardware on the performance of strongly-consistent replica-
tion protocols. To this end, we presented Odyssey, a frame-
work that enables the fast development and deployment of
replication protocols over modern hardware. Over Odyssey,
we built and evaluated ten protocols. Extrapolating their
results to the entire design space through an informal taxon-
omy, we provided a characterization of strongly-consistent
replication protocols.
On the system side, we experienced first-hand the neces-

sity for a reliable, high-performance framework to design,
build and deploy replication protocols. Without it, system-
level bugs (networking, KVS etc.) become a black hole for de-
veloper time. In hindsight, this is no surprise: clean interfaces
that abstract orthogonal components have been the corner-
stone of computer science. Nevertheless, we were pleasantly
surprised to see that we can build and deploy a new protocol
in two days (§4.1).

When it comes to protocol design, the overarching lesson
is that the true limits of a protocol will be uncovered only
when all artificially imposed bottlenecks have been removed.
Plainly, this calls for highly-optimized, multi-threaded and
RDMA-enabled implementations. It is very telling that ZAB
outperforms Classic Paxos (CP) by more than 2x when both
are single-threaded, but the result is inverted when they are
multi-threaded. The pseudo bottleneck of single-thread im-
plementations conceal ZAB’s inefficiencies while holding
back CP’s capabilities. Multi-threading removes the bottle-
neck, laying bare the true nature of the protocols.
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