Hermes: A Fast, Fault-Tolerant and Linearizable
Replication Protocol

Antonios Katsarakis, Vasilis Gavrielatos, M. R. Siavash Katebzadeh,
Arpit Joshi*, Aleksandar Dragojevic**, Boris Grot, Vijay Nagarajan
University of Edinburgh, *Intel, **Microsoft Research

Abstract

Today’s datacenter applications are underpinned by data-
stores that are responsible for providing availability, con-
sistency, and performance. For high availability in the pres-
ence of failures, these datastores replicate data across several
nodes. This is accomplished with the help of a reliable replica-
tion protocol that is responsible for maintaining the replicas
strongly-consistent even when faults occur. Strong consis-
tency is preferred to weaker consistency models that cannot
guarantee an intuitive behavior for the clients. Furthermore,
to accommodate high demand at real-time latencies, datas-
tores must deliver high throughput and low latency.

This work introduces Hermes', a broadcast-based reliable
replication protocol for in-memory datastores that provides
both high throughput and low latency by enabling local reads
and fully-concurrent fast writes at all replicas. Hermes cou-
ples logical timestamps with cache-coherence-inspired inval-
idations to guarantee linearizability, avoid write serialization
at a centralized ordering point, resolve write conflicts locally
at each replica (hence ensuring that writes never abort) and
provide fault-tolerance via replayable writes. Our implemen-
tation of Hermes over an RDMA-enabled reliable datastore
with five replicas shows that Hermes consistently achieves
higher throughput than state-of-the-art RDMA-based reli-
able protocols (ZAB and CRAQ) across all write ratios while
also significantly reducing tail latency. At 5% writes, the tail
latency of Hermes is 3.6x lower than that of CRAQ and ZAB.

CCS Concepts - Computer systems organization —
Cloud computing; Reliability; Availability, - Software and
its engineering — Consistency.

Keywords Fault-tolerant; Replication; Consistency; Avail-
ability; Throughput; Latency; Linearizability; RDMA

!The name is inspired by the immortal Olympian figure, who was the
messenger of the gods and a conductor of souls into the afterlife.

ASPLOS 20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS °20),
March 16-20, 2020, Lausanne, Switzerland, https://doi.org/10.1145/3373376.
3378496.

ACM Reference Format:

Antonios Katsarakis, Vasilis Gavrielatos, M. R. Siavash Katebzadeh,
Arpit Joshi, Aleksandar Dragojevic, Boris Grot, Vijay Nagarajan.
2020. Hermes: A Fast, Fault-Tolerant and Linearizable Replication
Protocol. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °20), March 16-20, 2020, Lausanne, Switzerland.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3373376.
3378496

1 Introduction

Today’s online services and cloud applications rely on high-
performance datastores?, such as key-value stores (KVS) and
lock services, for storing and accessing their dataset. These
datastores must provide high throughput at very low laten-
cies while offering high availability, as they are deployed on
failure-prone commodity infrastructure [27]. Keeping the
dataset in-memory and exploiting high-performance data-
center networking (e.g., RDMA) is essential, but not sufficient.

Data replication is a fundamental feature of high perfor-
mance and reliable datastores. Data must be replicated across
multiple nodes to increase throughput because a single node
often cannot keep up with the request load [23]. Replica-
tion is also necessary to guarantee that a failure of a node
or a network link does not render a portion of the dataset
inaccessible. Maintaining the replicas strongly-consistent, to
ensure that the services running on the datastore operate
correctly, is a challenge, especially in the presence of fail-
ures. A reliable replication protocol is responsible for keeping
the replicas of a datastore strongly-consistent - even when
faults occur — by determining the necessary actions for the
execution of reads and writes.

When it comes to performance, recent works on reliably-
replicated datastores focus on throughput [95] and tend to
ignore latency. Meanwhile, latency is emerging as a critical
design goal in the age of interactive services and machine
actors [16]. For instance, Anwar et al. [7] note that a deep
learning system running on top of a reliable datastore is
profoundly affected by the latency of the datastore.

Today’s replication protocols are not designed to handle
the latency challenge of in-memory reliable datastores. Chain
Replication (CR) [97], a state-of-the-art high performance re-
liable replication protocol [7] is a striking example of trading

*We use the term datastore broadly to encompass a wide range of in-memory
storage systems with an API for reading and writing objects (keys).

decentralized

writes inter-key concurrent
fast (e.g., few RTTs)

load-balanced

Table 1. Replication protocol features for high-performance

latency for throughput. Qur detailed study of CRAQ [95], the
state-of-the-art CR variant, reveals that whilst CRAQ can of-
fer very high throughput, it is ill-suited for latency-sensitive
workloads. CRAQ organizes the replicas in a chain. While
reads can be served locally by each of the replicas, writes
expose the entire length of the chain. Moreover, when a read
hits a key for which a write is in progress, the read incurs
an additional latency as it waits for the write to be resolved.
With high-latency writes, and mixed-latency reads, CRAQ
fails to provide predictably low latency.

This work addresses the challenge of designing a reliable
replication protocol that provides both high throughput and
low latency within a datacenter. To that end, we identify key
features necessary for high performance, which are summa-
rized in Table 1. For reads, this means the ability to execute
a read locally on any of the replicas. For writes, high perfor-
mance mandates the ability to execute writes in a decentral-
ized manner (i.e., any replica can initiate and drive a write
to completion without serializing it through another node),
concurrently execute writes to different keys, and complete
writes fast (e.g., by minimizing round-trips).

Based on these insights, we introduce Hermes, a strongly-
consistent fault-tolerant replication protocol for in-memory
datastores that provides high throughput and low latency.
At a high level, Hermes is a broadcast-based protocol for
single-key reads, writes and RMWs that resembles two-phase
commit (2PC) [40]. However, 2PC is not reliable (§7) and is
overkill for replicating single-key writes. In contrast, Hermes
is highly optimized for single-key operations and is reliable.

Hermes combines two ideas to achieve high performance.
The first is the use of invalidations, which is a form of light-
weight locking inspired by cache coherence protocols. The
second is per-key logical timestamps implemented as Lam-
port clocks [61]. Together, these enable linearizability, local
reads and fully-concurrent, decentralized, and fast writes.
Logical timestamps further allow each node to locally estab-
lish a single global order of writes to a key, which enables
conflict-free write resolution (i.e., writes never abort® — an-
other difference from 2PC) and write replays to handle faults.
To summarize, the contributions of this work are as follows:

¢ Introduces Hermes, a reliable replication protocol that
utilizes invalidations and logical timestamps to achieve
high performance and linearizability. Any replica in Her-
mes allows for efficient local reads and fast fully-concurrent
writes. Hermes handles message loss and node failures by
guaranteeing that any write can always be safely replayed.
e Formally verifies Hermes in TLA* [62] for safety and

*Read-Modify-Writes (RMWs) in Hermes may abort (§3.6).

absence of deadlocks in the presence of crash-stop failures,
message reorderings and duplicates.

¢ Implements a high-performance RDMA-based reliable
KVS incorporating Hermes with Wings, our efficient RDMA
RPC library. Our evaluation of Hermes shows that it outper-
forms the state-of-the-art RDMA-enabled virtual Paxos [50]
protocol by an order of magnitude. Moreover, Hermes
achieves higher throughput than the highly-optimized
RDMA-based state-of-the-art ZAB [53] and CRAQ [95] repli-
cation protocols across all write ratios while significantly
reducing the tail latency. At 5% writes, the tail latency of
Hermes is at least 3.6x lower than that of CRAQ and ZAB.

2 Background
2.1 In-Memory Distributed Datastores

This work focuses on a replication protocol that can be de-
ployed over datastores, replicated within a local area network
such as a datacenter. Clients typically interact with a datas-
tore by first establishing a session through which they issue
read and write requests. These datastores keep the applica-
tion dataset in-memory and employ efficient communication
primitives (e.g., RDMA or DPDK) to achieve high through-
put at very low latencies. One example of such datastores
is key-value stores (KVS) [23, 31, 32, 59, 69] that serve as
the backbone for many of today’s data-intensive online ser-
vices, including e-commerce and social networks. Another
example is lock services, such as Apache Zookeeper [48] and
Google’s Chubby [24], which provide an API to the clients
that allows them to maintain critical data, including locks.

2.2 Replication and Consistency

Datastores typically partition the stored data into smaller
pieces called shards and replicate each shard to guarantee
fault tolerance. A fault-tolerant replication protocol is then
deployed to enforce consistency and fault tolerance across all
replicas of a given shard. The number of replicas for a shard is
the replication degree, and it presents a trade-off between cost
and fault tolerance: more replicas increase fault tolerance, but
also increase the cost of the deployment. A replication degree
between 3 to 7 replicas is commonly considered to offer a
good balance between safety and cost [48]. Thus, although a
datastore may span numerous nodes, the replication protocol
need only scale with the replication degree.

Whenever data are replicated, a consistency model must
be enforced. While weak consistency can be leveraged to in-
crease performance, it can also lead to nasty surprises when
developers or clients attempt to reason about the system’s
behavior [99]. For this reason, this work focuses on reli-
able replication protocols that offer the strongest consistency
model: Linearizability (Lin) [46], which mandates that each
request appears to take effect globally and instantaneously
at some point between its invocation and completion. Lin
has intuitive behavior, is compositional, and allows for the

broadest spectrum of applications [45, 98].

2.3 High Performance

Maintaining high performance under strong consistency and
fault tolerance is an established challenge [11, 97]. In the con-
text of in-memory datastores, high performance is accepted
to mean low latency and high throughput. Requirements for
achieving high performance differ for reads and writes.

Reads The key to achieving both low latency and high
throughput on reads is (1) being able to service a read on any
replica, which we call load-balanced reads, and (2) completing
the read locally (i.e., without engaging other replicas). While
seemingly trivial, load-balanced local reads (referred to as
just local reads from now on) are a challenge for many reliable
protocols, which may require communication among nodes
to agree on a read value (e.g., ABD [9, 73] and Paxos [63])
or that mandate that only a single replica serve linearizable
reads for a given key (e.g., Primary-backup [5]).

Writes Achieving high write performance under strong con-
sistency and fault tolerance is notoriously difficult. We iden-
tify the following requirements necessary for low-latency
high-throughput writes:

> Decentralized: In order to reduce network hops and pre-
serve load balance across the replica ensemble, any replica
must be able to initiate a write and drive it to completion (by
communicating with the rest of the replicas) whilst avoiding
centralized serialization points. For instance, both ZAB and
CR require all writes to initiate at a particular node, hence
failing to achieve decentralized writes.

> Inter-key concurrent: Independent writes on different keys
should be able to proceed in parallel, to enable intra- and
multi-threaded parallel request execution. For example, ZAB
requires all writes to be serialized through a leader, thus
failing to provide inter-key concurrency.

> Fast: Fast writes require minimizing the number of mes-
sage round-trips, avoiding long message chains (e.g., in con-
trast to CR), and shunning techniques that otherwise increase
write latency (e.g., performing writes in lock-step [74, 87]).

2.4 Reliable Replication Protocols

Failure model We consider a partially synchronous sys-
tem [34] where processes are equipped with loosely syn-
chronized clocks (LsCs)* and crash-stop or network failures
may occur (as in [25]). In this model, processes may fail by
crashing and their operation is non-Byzantine. Additionally,
network failures can manifest as either (1) message reorder-
ing, duplication and loss, or (2) link failures that may lead to
network partitions.

Reliable replication protocols capable of dealing with fail-
ures under the above failure model can be classified into

“Some reliable replication protocols can maintain safety and liveness with-
out LSCs. We discuss one such variant of our Hermes protocol in §8.

Chain Broadcast

%«iiuakéhh

CRAQ T Hermes

l (this work)
Chain- Rep!lcatmn (CR)

-
>

“aunawiy |

H
l**
=
Y
-
=
|

Primary-Backup

Better Throughput

(Local) Reads ~ Writes
—_—

Better Latency :
Figure 1. Comparison of reliable membership-based protocols
in terms of throughput and latency.

two categories: majority-based protocols, which are typically
variants of Paxos [63], and protocols that require a stable
membership of live nodes (membership-based protocols).

Majority-based protocols This class of protocols requires
the majority of nodes to respond in order to commit a write,
making it naturally tolerant to failures provided that a ma-
jority is responsive. However, majority-based protocols pay
the price in performance since - in the absence of responses
from all replicas - there is no guarantee that a given write
has reached all replicas, which makes linearizable local reads
fundamentally challenging. Thus, most majority-based pro-
tocols give up on local reads but may support decentralized
or inter-key concurrent writes [63, 73, 78]. Majority-based
protocols that allow for local reads either serialize indepen-
dent writes on a master (e.g., ZAB) or require communication-
intensive per-key leases (§7); problematically, both approach-
es hurt performance even in the absence of faults.

Membership-based protocols Protocols in this class re-
quire all operational nodes in the replica group to acknowl-
edge each write (i.e., read-one/write-all protocols [51]). In
doing so, they assure that a committed write has reached
all replicas in the ensemble, which naturally facilitates lo-
cal reads without necessarily hindering write performance.
Thus, in the absence of faults, membership-based protocols
are naturally free of performance limitations associated with
majority-based protocols.

Membership-based protocols are supported by a reliable
membership (RM) [54], typically based on Vertical Paxos [67].
Vertical Paxos uses a majority-based protocol to reliably
maintain a stable membership of live nodes [96] (i.e., as in vir-
tual synchrony [18]), which is guarded by leases. Informally,
nodes in Vertical Paxos locally store a lease, a membership
variable and an epoch_id. Nodes are operational as long as
their lease is valid. Messages are tagged with the epoch_id
of the sender at the time of message creation, and a receiver
drops any message tagged with a different epoch_id than its
local epoch_id. The membership variable establishes the set
of live nodes, which allows for efficient execution of reads
and writes on any node with a valid lease. During failure-free
operation, membership leases are regularly renewed. When

a failure is suspected, the membership variable is updated
reliably (and epoch_id is incremented) through a majority-
based protocol but only after the expiration of leases. This
circumvents potential false-positives of unreliable failure
detection and maintains safety under network partitions
(§3.4). Simply put, updating the membership variable only
after lease expiration ensures that unresponsive nodes have
stopped serving requests before they are removed from the
membership and new requests complete only amongst the
remaining live nodes of the updated membership group.

A common practice for high-performance replication is to
optimize for the typical failure-free operation by harnessing
the performance benefits of membership-based protocols
and limiting the usage of majority-based protocols to RM
reconfiguration [33, 51, 67]. In fact, major datacenter opera-
tors, such as Microsoft, not only exploit membership-based
protocols in their datastores [33, 92], but they also provide
LSCs [29, 88] and RM [54] as datacenter services to ease the
deployment of membership-based protocols by third parties.

One of the earliest membership-based protocols is Primary-
backup [5], which serves all requests at a primary node and
does not leverage the backup replicas for performance. Chain
Replication (CR) [97] improves upon Primary-backup by or-
ganizing the nodes in a chain and dividing the responsibil-
ities of the primary amongst the head and the tail of the
chain, as shown in Figure 1 (bottom-left). CR is a common
choice for implementing high performance reliable replica-
tion [7, 12, 52, 95, 101]. We next discuss CRAQ [95], a highly
optimized variant of CR.

25 CRAQ

CRAQ is a state-of-the-art membership-based protocol that
offers high throughput and strong consistency (Lin). In CRAQ,
nodes are organized in a chain and writes are directed to its
head, as in CR. The head propagates the write down the chain,
which completes once it reaches the tail. Subsequently, the
tail propagates acknowledgment messages upstream towards
the head, letting all nodes know about the write’s completion.

CRAQ improves upon CR by enabling read requests to be
served locally from all nodes, as shown in Figure 1 (top-left).
However, if a non-tail node is attempting to serve a read for
which it has seen a write message propagating downstream
from head to tail, but has not seen the acknowledgement
propagating up, then the tail must be queried to find out
whether the write has been applied or not.

CRAQ is the state-of-the-art reliable replication protocol
that achieves high throughput via a combination of local
reads and inter-key concurrent writes. However, CRAQ fails
to satisfy the low latency requirement: while reads are typi-
cally local and thus very fast, writes must traverse multiple
nodes sequentially incurring a prohibitive latency overhead.

Coordinator Followers

Node 1} (Node 2) [Node 3)

INV(K,T5.3)

write(K=3)

ACK(K,TSL =

ACK(K, TS

time | <———

Out of the
critical path

£~ VAL(K,TS)

Figure 2. Example of writing a value of 3 to key K. Nodes one,
two and three hold a replica of K. TS is the timestamp.

3 Hermes

Hermes is a reliable membership-based broadcasting pro-
tocol that offers high throughput and low latency whilst
providing linearizable reads, writes, and RMWs (single-key
transactions). Hermes optimizes for the common case of no
failures [15] and targets intra-datacenter in-memory data-
stores with a replication degree typical of today’s deploy-
ments (3-7 replicas) [48]. As noted in §2.2, the replica count
does not constrain the size of a sharded datastore, since each
shard is replicated independently of other shards. Example
applications that can benefit from Hermes include reliable
datastores [11, 12, 80, 101], lock-services [24, 48] and appli-
cations that require high performance, strong consistency
and availability (e.g., [1, 20, 102]).

3.1 Overview

In Hermes, reads complete locally. Writes can be initiated
by any replica and complete fast regardless of conflicts. As
illustrated in Figure 2, a write to a key proceeds as follows:
the replica initiating the write (called coordinator) broadcasts
an Invalidation (INV) message to the rest of the replicas (called
followers) and waits on acknowledgments (ACKs). Once all
ACKs have been received; the write completes via a Validation
(VAL) message broadcast by the coordinator replica.

We now briefly overview the salient features of Hermes
and discuss the specifics in the following subsections.

Invalidations When an INV message is received, the target
key is placed in an Invalid state, meaning that reads to the
key cannot be served. While conceptually similar to a lock
(e.g., in 2PC), the key difference is that with invalidations,
concurrent writes to the same key do not fail and are resolved
in place through the use of logical timestamps as discussed
below. The use of invalidations is inspired by cache coher-
ence protocols, where a cache line in an Invalid state informs
the readers that they must wait for an updated value.

Logical timestamps Each write in Hermes is tagged with
a monotonically-increasing per-key logical timestamp, im-
plemented using Lamport clocks [61] and computed locally
at the coordinator replica. The timestamp is a lexicograph-
ically ordered tuple of [v, ci4] combining a key’s version
number (v), which is incremented on every write, with the
node id of the coordinator (cjq). Two or more writes to a
key are concurrent if their execution is initiated by different

