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Abstract

Data-serving systems constitute the backbone of today’s large-scale applications, which

are characterized by read-intensive and heavily skewed data accesses. As a conse-

quence, the performance and scalability of the most prominent applications, which are

growing both in terms of volume and popularity, heavily rely on such systems. How-

ever, existing data-serving solutions are offering sub-optimal performance with limited

scalability, due to the load imbalances caused by the skewed accesses. Existing repli-

cation schemes increase the concurrency of the requests to alleviate the problem, but

are not transparent to the clients, require to track sharers and their benefits are limited

to eventual consistency. On the other hand, traditional caching techniques can be used

to filter the skew, even though they are prone to bottlenecks and require additional

resources.

In this work, we introduce Symmetric Caching, a novel skew mitigation technique

that combines the best of caching and replication, to diminish load imbalance and in-

crease performance in data-serving systems. This method is flexible, and it can be

adopted transparently from the clients, by various data-serving architectures. More-

over, it avoids the cost of tracking replica sharers, and it achieves consistency over

the replicas exploiting efficient protocols, that accomplish distribute write-serialization

and reduce the costly network round-trips. We developed a discrete-event simulator to

provide insights and evaluate the impact of Symmetric Caching in different datacenter

deployments. Our results, using a representative configuration, indicate that Symmet-

ric Caching can increase the throughput of state-of-the-art system by 7.8x in eventual

consistent setting and more than 5.4x while offering strong consistency.
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Chapter 1

Introduction

1.1 Data Serving

Data serving is considered as one of the core utilities in a datacenter, as it constitutes

the fundamental building block for many datacenter applications. These applications,

which span multiple fields and offer a variety of services, such as e-commerce, social

networking, and electronic marketplaces, rely on data serving systems to store, modify

and access their datasets.

The majority of requests in data serving systems refer to relatively small-sized

objects[5, 14]. This is a repercussion of the primary purpose of those services, which is

to offer a personalized user experience with dynamic content. As a consequence, each

user request is translated into hundreds of smaller internal requests[14, 43], which are

then sent to the data serving system in order to create an up to date on-demand response

for the user.

Moreover, in data-serving workloads reads dominate writes and the access traffic

is characterized as read-mostly[9, 14]. For instance, Facebook reports that just 0.2%

of their total traffic consists of writes[9]. This is a consequence of the fact that in those

services a piece of content is written by a single or small number of users (i.e. a post

in a social network), while it can be read by a broader group of users (i.e. friends,

followers).

Furthermore, data serving systems are required to offer both high performance and

massive storage capacity, since the above applications, which are usually identified as

large scale, are constantly increasing both in terms of popularity and volume[2]. More

precisely, two aspects of performance are critical for data serving systems. Firstly,

the user-facing nature of requests implies that latency should respect tight bounds

1



2 Chapter 1. Introduction

defined by service level objectives (SLO), because response time is crucial to user

satisfaction[13] and even small delays can have immense financial impacts. Secondly,

there is also a need for high throughput, due to the extensive amount of concurrent user

requests, which produce a massive load of internal traffic[39].

To cope with those demands, data serving systems partition and distribute the

datasets across multiple machines, using a mechanism called sharding. This approach

leverages hashing techniques, such as consistent hashing[31], to evenly distribute the

dataset across various nodes. Thus, it can offer an excessive amount of storage. Fur-

thermore, since data are distributed among many nodes, ideally the hardware resources

of every single machine could be exploited by issuing requests in parallel to increase

the performance of the system.

1.2 Performance Bottlenecks in Data Serving

1.2.1 Skewed Data Access

Although the dataset is partitioned almost evenly across the machines, the data ac-

cesses are skewed. More precisely, several studies[5, 41, 26, 47] has shown that real

world applications of this scale demonstrate data access patterns that follow a power-

law distribution as illustrated in the Figure1.1. In other words, just a few objects are

responsible for most of the accesses.

This phenomenon leads to high load imbalance in the system since nodes that are

responsible for the most popular objects receive much more requests than the rest of the

machines. Consequently, the majority of the requests are serialized in a small number

of nodes, which limits the parallelism of the system and impacts its performance.

1.2.2 Inefficiencies of Traditional TCP/IP

TCP/IP is an inter-temporal protocol designed at the 70s and is still used today for

communication over the network. This protocol is a de facto, and it is not only applied

in wide area networks, such as the internet, but it is also used for the intra-datacenter

communication. Although the protocol seems to satisfy the requirements of individ-

uals to communicate and access content over the globe, several studies[18, 33] have

revealed that it can be a huge burden for performance-oriented datacenter systems,

such as data serving, where the network is a dominant factor.
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Figure 1.1: Large scale data accesses following power-law (linear in log-log scale)

trends. (Figure 1 from [47])

TCP/IP can be characterized as a computational-hungry network protocol, which

affects systems’ performance, for numerous distinct factors. First of all, as Figure1.2

depicts TCP/IP network stack is composed of multiple layers. Although the layered

model makes the design and implementation easier, the hefty headers contained in

each packet consume computational resources at the expense of the application logic,

both at the transmission and reception phase. Furthermore, the processing of a TCP/IP

packet involves interrupts and happens in kernel mode, thus in addition to preventing

application threads to run, it also introduces expensive context switches between user

and kernel space. Last but not least, during header processing and as the packet moves

from one stage to another, data is copied multiple times until it reaches the application

layer, which contributes to the overall cost.

Apparently, the heavy processing requirements of the TCP/IP stack further adds to

the load imbalance problem caused by the skewed data accesses among the servers. As

a result, the overall performance of those systems is bottlenecked by the serialization

of the requests in the few nodes storing the hottest items, while the majority of the

machines remain under-utilized.
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Figure 1.2: Procedure of receiving a single message over TCP/IP.

1.3 Contributions of the Thesis

The aim of this thesis is to reveal useful insights and provide an efficient solution to

the load imbalance problem caused by skewed data accesses, which affects the per-

formance and scalability of existing data-serving systems. More precisely, this work

makes the following contributions:

• We propose and evaluate Symmetric Caching, a novel skew mitigation tech-
nique that offers load balancing and increases the performance of data-
serving systems, by combining the best attributes of replication and caching,

while being transparent to the clients and avoiding the costly requirement of

tracking shares. (Section 3.1)

• We developed and verified for safety, efficient protocols that evenly spread
the cost of required actions for consistency and significantly increase perfor-

mance, by enabling writes to be executed in any replica and achieving distributed

write-serialization without incurring any network hops. (Section 3.3)

• We introduce Incremental Concurrency Control a new dynamic synchroniza-
tion scheme, where an object according to its popularity can be benefited either

by the lack of synchronization overheads or by the concurrency offered by opti-

mistic concurrency control methods. (Section 3.4)

• We implement ”Eureka”: A configurable discrete event simulator for data
serving systems, that enhances the design exploration and enables the compar-
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ison between distinct systems with different peculiarities on the complex dis-

tributed environments. (Section 4.1)

The rest of this thesis is organized as follows: Chapter 2 provides background

knowledge and discusses the related work. Chapter 3 presents and explains the bene-

fits of the Symmetric Caching technique. Chapter 4 gives more details about the sim-

ulator, the experiments conducted and the evaluation results, while Chapter 5 provides

conclusion and future work.





Chapter 2

Background and Related Work

2.1 Key-Value Stores

For more than a decade, key-value stores(KVS) consist the most common paradigm for

high-performance data serving systems. In detail, a KVS is a convenient and simple

abstraction of storing a dataset at object granularity, where each object is stored as a

value, and it is referenced using a unique key identifier. Their simplicity is reflected

to their API, which is usually limited to primitive functions, such as GET(key) and

PUT(key, value) that correspond to single object read and write operations.

In-memory Key Value Stores

Numerous research studies have been focused on KVS designs by prioritizing differ-

ently the characteristics of availability, performance, consistency, and fault-tolerance.

A key-value store can be classified and used either as a cache[21, 35] or as a storage

solution[24, 14]. The primary difference between those designs is that a storage KVS

is a standalone solution that requires persistence, while a cache is used on top of disk-

oriented storage systems, to accelerate slow disk accesses and to provide a performance

boost by temporarily keeping the objects in memory.

Although the conventional implementations of those two KVS classes were differ-

ent since one was optimized for memory and the other for disk, recently both of the

approaches have converged to in-memory designs. The drop in the price of DRAM[43]

and the need for high-performance, lead state-of-the-art storage systems also to move

into in-memory schemes[18, 43], by leveraging replication and check-pointing to disk,

in order to tolerate failures of the system.

7



8 Chapter 2. Background and Related Work

2.2 Low Latency Network in Datacenters

The last few years, research has been focusing on low-latency networking solutions[23,

40, 45, 16] for intra-datacenter communication. The main goal is to moderate the

cost of the required network processing. This is usually achieved by re-designing the

network stack and by providing specialized hardware, to avoid occupying critical for

performance CPU resources.

Innovations such as RoCE[27] enabled the popular, in the high-performance com-

munity, RDMA protocol to run on top of Ethernet, which helped in the adoption of

low-latency networks by datacenter providers. In more details, RDMA is an efficient

networking alternative that tries to overcome most of the TCP/IP expenses. To achieve

that, it offers features such as kernel bypass and zero-copy, as shown in Figure 2.1. Ad-

ditionally, it pushes most of the complexity to the network interface card(NIC), where

specialized hardware performs the required actions efficiently. As a result, it occupies

as fewer CPU resources as possible and avoids packet processing to interfere with the

application execution.

Enhancing Data Serving with RDMA

As large-scale applications, become more and more popular, their performance re-

quirements keep increasing. To cope with those demands data serving systems, such

as key-value stores, try to squeeze every drop of performance. This has motivated

multiple researchers both from academia[46, 7, 28, 37, 29] and industry[18, 48], to en-

hance these systems with cost-effective RDMA networking, that overcomes traditional

overheads. Most works choose to completely re-design and implement systems from

scratch, to find the most efficient way to endorse this low-latency communication.

Figure 2.1: Data communication over TCP/IP vs. RDMA (Figure 1. from [6])
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However, the community seems to be divided in terms of how to leverage this new

technology as efficiently as possible. More precisely, RDMA provides two different

methods of communication, using either two-sided or one-sided operations. The for-

mer is the traditional way of communication, similar to the conventional protocols,

where both parties involved in the communication, consume CPU resources. On the

other hand, the latter consists a new communication primitive where a node can re-

motely read or write directly to or from another machine’s memory, using specialized

hardware on the NIC of the targeting node, but without occupying any of its CPU re-

sources. One-sided operations seem more attractive to the research community. Nev-

ertheless, they introduce several challenges[49, 50, 17], and recent works[29, 30] have

shown that long-established two-sided operations can be equally efficient for KVS de-

signs.

2.3 Sharding and Skewed Data Accesses

Due to the amount of the storage capacity and performance demanded by large-scale

applications, the dataset is sharded across several machines. In such scenarios, using

the unique key identifier and a hash function is enough to locate the single machine,

also known as the home of the key, which is responsible for storing and serving re-

quests for the particular object.

Although designs that exploit in-memory and low latency networks boost perfor-

mance, the parallelism offered by sharding is the primary factor that determines it. In

large-scale data serving systems that can span hundreds or thousands of machines, the

concurrency of the system can provide tremendous benefits regarding performance.

In the utopian scenario of uniform access traffic, the performance always increases

as more servers are added to the system, following a linear trend. Moreover, a state-

of-the-art study for in-memory key-value store[35] has provided evidence that in the

absence of skew in the workload, it is even more beneficial to partition the dataset in

core granularity instead of the server. This approach can further boost performance by

avoiding intra-node synchronization overheads, such as locks.

Limits of Sharding in the presents of Skew

The phenomenon that real-world data serving workloads follow skewed data access

patterns is also known as popularity skew. Prior studies, has shown that these accesses
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can be represented accurately by a Zipfian distribution[5, 8, 49, 20, 44]. More pre-

cisely, Zipf’s law can be applied by sorting the keys in descending order based on their

accesses. Then the popularity p of a key, given by (2.1), is inversely proportional to

its rank r. The exponent a consists the main determining factor of this equation and

according to the literature representative values for realistic accesses are usually close

to unity. Although the precise value is workload-specific, typically the research com-

munity uses a= 0.99[18, 11, 25, 34], with some exceptions that have used either lower

(i.e. a = 0.9)[4] or even higher (i.e. a = 1.01)[20] values.

p = 1/r�a (2.1)

Techniques that simply partition the dataset, such as consistent hashing, are not

designed to deal with highly skewed access traffic. Sharding methods can just evenly

spread the dataset among the nodes, since by their nature they are not sufficient to

handle skew, because of two factors. Firstly, due to the fact that the access patterns can

not be predicted a priori and thus are unknown at the partitioning phase, and secondly

because the key popularity can dynamically shift during the execution.

Therefore, despite the fact that partitioning can provide high concurrency, in the

ideal case of uniform workloads, the opposite holds when it is applied to realistic

systems that exhibit skewed data accesses. This is because of the incident that the

majority of access traffic which is generated, is targeting only a few nodes that store

the most popular objects. As illustrated in Figure 2.2, machines that store the hottest

objects receive more than 7x requests compared to the average node.

Consequently, there is a high load imbalance in the system, creating hot-spots,

which serializes most of the requests, towards the path where the popular keys are

stored in the set-up. More precisely, either just a few network links in this direction,

or one of the performance critical edge-component, such as the memory, NIC(s), or

cores of the most popular machines, limit the performance of those systems. Thus,

large-scale systems are constrained by the minority of the overloaded resources while

the rest are under-utilised.

2.4 Skew Alleviation Techniques

There have been several works which attempt to solve the load imbalance problem,

caused by skewed data accesses, in data serving systems. Some of those take actions

pro-actively, while others are reactive. Although existing methods can noticeably im-
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Figure 2.2: Per machine load of a partitioned dataset in 128 nodes that follows Zipfian

distribution with exponent factor a = 0.99

prove the performance of current systems, they either offer sub-optimal solutions, or

they introduce consistency maintenance burdens. Additionally, it worth mentioning

that some of the approaches either are unable to support performance-critical features,

that further boost the efficiency of such systems, or they assume scalable RDMA net-

works.

2.4.1 Dynamic Replication

Dynamic replication is the oldest and the most commonly used reactive approach, that

targets the problem of skewed data accesses. In this method, each key is initially ser-

viced only by its home node. When load spikes, a load-balancer triggers a replication

of hot objects to another node. Therefore, by definition, dynamic replication does not

equally spread the load, but instead, once the resources of a single or a group of nodes

are insufficient then it takes action.

In detail, this approach usually can not provide a deterministic way to predict the

location of the keys if replication actions have occurred; thus a dynamic global map

that locates keys in the system has to be known. This can be either achieved by redi-

recting all the client traffic through load balancers, that increase the number of total

hops, or by managing and communicating this global state to each client. Addition-

ally, a lot of metadata is required to track the accesses and the placements of keys,
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thus usually the keys are grouped to reduce this overhead, in shards[9]. However, this

increases the cost of replication, since a single popular key leads into a replication of

its whole group.

A recent dynamic replication scheme, proposed by Hong and Thottethodi, SPORE

[25], seem to overcome most of the previous difficulties. It leverages the existing KVS

API and consistent hashing, to replicate and locate a single key deterministically. A

new replica is created just by appending the replica number at the end of the original

key as a suffix, and then this key is inserted into the system leveraging the consistent

hashing mechanism. Although this technique minimizes the cost of both tracking ac-

cesses and locating keys, still the clients have to be aware of the replication factor of

each key. Furthermore, since this approach deterministically chooses the key for the

replica, which is cloned to a node ”blindly”, without considering any important factors,

such as the location, the load or even if the targeted node already contains a replica for

the same key. Thus, it is not unusual to lead into a domino effect.

Finally, either by the conventional method or the SPORE’s approach, offering

strong consistency is a burden. In both of the cases, due to the replicas placement,

where they might end up being far away, achieve that cost-effectively is not feasible,

especially when the TCP/IP protocol is used. In addition to that, in the conventional

approach, there is a further cost in terms of consistency, since even non-popular keys

that were replicated because they belonged to a heavy hitter group have to be kept

consistent. These two reasons are contributing to the case, that most, if not all, of the

dynamic replication approaches, are beneficial only over weaker consistency guaran-

tees.

2.4.2 Caching Techniques

Caching is one of the most pervasively used techniques, that is applied in almost every

system either in software or hardware. This method exploits the locality of data, and it

is used to reduce the access latency and save network bandwidth.

Techniques that leverage caching are also extensively used in the context of the

data serving systems. Existing approaches are applying caching to filter the skew of the

workload, using diverse architectures, as shown in Figure 2.3, in different locations in-

between the clients and the back-end nodes, and exploiting various hardware features.

Nevertheless, in most cases caching in large-scale systems is either vulnerable to hot-

spots or it introduces consistency issues, similar to the dynamic replication techniques.
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Figure 2.3: Existing caching architectures. (Figure 1 from [34])

The work by Fan et al.[20], proves that a small popularity-based cache that can fit

on the last level hardware cache(LLC) of a scale-up server, can be surprisingly effec-

tive, for large-scale systems. More precisely, this design argues about a scale-up server

that resides in-between clients and servers and acts as a load balancer implemented as

an on-path look-through cache. Although the cache itself can be effective, this design

increases the number of hops, and the load balancer consists a single point of failure

for the system. Additionally, in the typical case where the request traffic is huge, a sin-

gle load balancer is a potential bottleneck degrading the system’s performance, since

it has to receive and process the requests of each individual client.

Furthermore, Bronson et al.[9] discuss a design where a similar small cache resides

in every client node, even though all cache hits have to be sent to the next layer to val-

idate that the value is not stale. As a result, just a small fraction of network bandwidth

is saved, in the case of the home node confirming that the cache value is consistent,

where the value does not need to be sent back to the client. However, the response time

is not reduced, and the skewed accesses are not filtered by the caches.

On the other hand, approaches based on the look-aside cache architecture such as

the one proposed by Nishtala et al.[39], present alternative obstacles. Their difficulties

include significant latencies, due to the increased number of hops, in the case of cache

misses while the complexity of handling those is imperfectly pushed to the client side.

Moreover, Li et al.[34] discuss a technique that leverages specialized hardware

on the SDN switches to efficiently route a key either to the cache or the back-end

nodes. However, this approach is limited by the processing and storage capability of

the switches, and more importantly, this method restricts each packet to contain only

a single key request. Thus, batching techniques that are beneficial for amortizing the

costly TCP/IP processing can not be used.

Finally, an interesting approach presented by Liu et. al[36], argues for distributed

in-network caching spread across the datacenter network. Although this approach can

reduce the network traffic and potentially save energy on the back-end nodes, it re-
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quires specialized hardware accelerators and more importantly it is highly complex to

keep those caches coherent.

2.4.3 TCP/IP Offloading & Alternatives

Another way to tolerate skew in such workloads is by reducing the cost of their op-

erations. Multiple studies[33, 42], have identified that the cost of such systems is

dominated by the TCP/IP protocol. Therefore, this section discusses some methods

for TCP/IP offloading and alternative networking approaches.

High expenses of TCP/IP are originated from the costly context switches and the

transitions between kernel and user-space, caused by traditional kernel drivers. A re-

cently open-sourced library DPDK[1], utilized in the work of Lim et al.[35], tries to

overcome such overheads, by efficiently implementing network drivers in user-space.

This approach, reduce the context switches and focuses on offering a cost-effective

communication between the driver and the NIC(s) by efficiently utilizing the PCIe and

the memory.

Furthermore, modern NICs include specialized hardware that offloads TCP/IP pro-

cessing. More accurately, they offer what is known as TCP offload engine (TOE)[38],

an integrated circuit included on the card which processes the TCP headers. This

avoids the slow header processing on software, which also occupies CPU resources.

An alternative way to cope with the cost of TCP/IP processing is by batching re-

quests [4] from clients to servers, which means that a single packet can contain mul-

tiple key-value operations. Although batching can alleviate the problem, it is not eas-

ily applicable for two reasons. Firstly, it requires finding several requests, originated

from a single machine with the same destination node, in systems where the dataset

is randomly sharded across multiple nodes. Additionally, this has to be done in a tiny

fraction of time since all the user requests have to respect tight latencies.

However, none of the above offloading methods can make TCP/IP as cost-effective

as RDMA, thus others [37, 29, 18] choose to replace the TCP/IP protocol, to get

maximum performance. Nevertheless, since RDMA is prone to scalability issues, a

more realistic approach for datacenter-scale systems, is RackOut[42] proposed by No-

vakovic et al. In more details, this work assumes a hybrid network, where the clients

are communicating with the back-end nodes through TCP/IP, and the back-end servers

are grouped and interconnected with an RDMA network. Leveraging this design, the

cost of TCP/IP processing is amortized by evenly spreading the client requests across
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the servers of a group. Consequently, once the packet processing is done, a back-end

node need to check if the key resides locally. In the exceptional case of a local request,

the execution proceeds normally, otherwise the request is served by directly accessing

the memory of the key’s home node, leveraging one-sided RDMA primitives. As a

result, this method requires an excessive amount of bandwidth and further increases

the response time of the request, since most requests incur an additional RDMA oper-

ation. Also, although this method evenly spreads the load among the CPU resources

of a group, other performance-critical components such as the NICs or the memory of

a popular node can still become a hot-spot in the system.

2.5 Summary

To summarize, none of the above techniques are able to completely mitigate the prob-

lem of skew efficiently. Existing replication techniques are reactive, can lead into

consecutive replication actions, present difficulties to track replicas and do not offer

strong consistency guarantees. On the other hand, caching techniques usually filter the

skew, even though they are prone to hot-spot issues. Finally, RackOut evenly spreads

the computation among nodes of the same group, but still, NICs and memory com-

ponents can be affected by skewed data accesses. Furthermore, most of the requests

require an additional hop through the network, which increases latency and bandwidth

requirements.





Chapter 3

Symmetric Caching

3.1 Core Idea

As it is mentioned already, data-serving systems are characterized by skewed data

accesses, which lead to serialization and hot-spots that limit their performance. The

primary purpose of this thesis is to reverse this fact by concentrating on the cause of

the problem. To achieve that, we propose Symmetric Caching a novel technique, which

exploits skew to offer load balance and increase performance, by combining the best

of caching and replication.

KVS1

cache1

KVS2

cache1

KVSN

cache1

Group 1

... KVSN+1

cache2

KVSN+2

cache2

KVSM

cache2

Group 2

...

Figure 3.1: M node partitioned key-value store, clustered into two symmetric caching

groups

In Symmetric Caching, data-serving nodes are grouped, and each one is equipped

with an in-memory software cache, as shown in Figure 3.1. Machines that belong in

the same group have replicated or identical caches that contain the most popular items

stored in the group. In this case, skew works in favour of this method, since a small

cache can be effective[20]. As the Figure 3.2 illustrates, caching a really small portion

of the dataset can ensure more than half of the workload accesses to hit the cache.

17
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Consequently, requests for the most frequently accessed keys, which are responsible

for the load imbalances, can be served independently by any node within the group. As

a result, there are no hot-spots in the system, and high concurrency can be achieved.

Although the solution may seem obvious at first glance, such a design may arise

several questions. Thus, in the next sections, we provide answers to some of the most

relevant and interesting questions.

Figure 3.2: Cache effectiveness according to a dataset of 250 M keys following Zipfian

accesses with a = 0.99.

3.2 Scratching the Surface

Is the approach flexible and adaptable?

To begin with, data-serving systems consist the back-end of online services, where the

data accesses and trends constantly change over time. The caches of the approach al-

ways contain the most popular objects, similarly to the work of Fan et. al[20]. Thus

it differs from the conventional designs that require bringing every object in the cache

before it gets accessed. This method avoids cache pollution with cold objects which are

not accessed frequently. However, it requires a way to identify the hottest keys and up-

date the contents of the caches on demand. This can be achieved in epochs, leveraging

streaming algorithms[15, 12], such as probabilistic lossy counting, that approximate

the hottest keys in a low-cost manner by sampling the accesses. Consequently, in our
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design, the size of the cache can be dynamically changed from zero to an upper-bound,

according to the on-demand requirements.

Furthermore, symmetric caching is designed to support different consistency mod-

els, that are further discussed in 3.3, which makes it adaptable to the system that is

applied. As a result, this technique can enhance either systems that sacrifice con-

sistency over performance, such as in-memory key-value caches, or others that require

stronger consistency guarantees, like key-value storage or transactional-based systems.

How does it achieve load balance while being transparent?

In contrast with most related work on replication and caching that demand the in-

tervention of client, Symmetric Caching has the advantage that systems can adopt it

transparently. Existing solutions push complexity to the client-side, by either relying

on the clients to handle cache misses or by requiring them to communicate with the

back-end service and maintain an up-to-date location of the replicas. However, in our

approach, the client just identifies the home server of the key, similarly to a system in

the absence of caching and replication, and therefore the symmetric group it belongs

to.

Once a group is determined by a key, the request is sent to any server in the group

chosen either randomly or in a round-robin manner. Then due to the popularity cache

the majority of the requests are served within a single hop, while the ones that miss

both the cache and the local storage are propagated to the home node of the key in

order to be served. Consequently, symmetric caching could be used to construct scale-

out architectures very similar to ccNUMA[32], especially if RDMA communication is

supported within those groups, where all the accesses go through a cache and in the

case of a miss they are served through the fast internal network.

Our approach is able to offer load balance while being transparent, leveraging the

replicated caches. More precisely, the requests are evenly spread across the machines,

where the identical caches can serve requests for the hottest keys, which are dominating

the traffic and are also responsible for causing load imbalances in the system. Finally,

the cold requests that also miss the local storage require one more hop, even though

they are served fast since the skew is filtered by the caches.
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3.3 Replication Challenges

Replication, which is a known way to increase the concurrency beyond the scope of

a single node, is the enabling mechanism for our load balancing technique. However,

replication usually comes with a lot of burdens, which include tracking sharers, main-

taining consistency and serialization of writes over replicas. In this section, we discuss

how such problems are handled in the case of symmetric caching.

Does the approach require tracking replicas?

One major limitation of existing replication techniques in data-serving systems is the

problem of tracking replicas either for dispatching the requests or for providing con-

sistency among the replicas. In large-scale data serving environments, which are con-

stituted by a large number of nodes and an enormous amount of distinct objects, the

complexity and cost of tracking sharers in key granularity are very challenging. In

contrast to related work, symmetric caching overcomes this difficulty since it does not

require any meta-data, for tracking sharers. This is because once a key has been iden-

tified as hot, then a machine is a sharer if and only if it belongs in the same group with

the home node of the key.

How does it ensure consistency?

Although data-serving accesses are characterized as read-mostly, when replication is

applied handling writes is a major factor that determines system’s performance. In a

replicated environment reads can be served efficiently, in contrast to writes that require

special actions to ensure consistency among the replicas. According to multiple stud-

ies, consistency maintenance is challenging[3] or almost impossible to be achieved[20]

in non-trivial scenarios. However, we show that is not true when using Symmetric

Caching and considering the low write-ratio of large-scale workloads.

In details, consistency maintenance of the replicated keys in Symmetric Caching

can be reduced to the problem of keeping the caches within a group coherent, similar

to traditional hardware caching. Thus, protocols for coherency actions are likewise

required. However, data-serving systems have to apply such actions through software,

over slower interconnects and in large-scale. As a result, there is a need to reduce

the costly hops and make the protocols as distributed as possible, to avoid potential
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Figure 3.3: Required write actions for each consistency model.

hot-spots.

Implementing protocols based on a traditional directory would violate both of the

above considerations. Instead, our protocols, as we already mentioned, leverage the

symmetric feature of our technique. Thus, once a write hit the cache, it deterministi-

cally knows that every other node in the group is a sharer and needs to receive the new

value.

The protocols that are used to handle writes in symmetric caching propagate the

new values supporting two consistency models, as shown in Figure 3.3. The first one

that offers Eventual Consistency (EC), saves performance by directly broadcasting the

written value to the group. On the other hand, the Strong Consistency (SC) version

trades some of its performance, to provide stronger guarantees by further ensuring

write atomicity, through a classic two-phase commit protocol. More precisely, the SC

model first sends invalidates and wait for acknowledgements. Once all of the acknowl-

edgements have been received, proceeds to the final step which is the same as EC,

where the write is performed locally, and updates to the sharers are sent.
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Table 3.1: Protocols for Write Serialization

Write Serialization latency for serialization Cost of Broadcast Actions

Primary Broadcast
propagate the write

to the home of the key
1 hop Home

Primary Timestamp
1.ask the home of the key for a timestamp

2. execute the write & broadcast actions using the timestamp
2 hops Distributed

All Peers
distributed serialization using

per key global timestamps (versions & machine id)
0 hops Distributed

How does it accomplish write-serialization?

In both for both of the above consistency models, there is still the need for a consensus

between the nodes for a single global ordering of writes that are proceeding concur-

rently on different nodes, also known as write serialization. In this work, we study

three different protocols, which are summarized in Table 3.1, that accomplish write

serialization.

More precisely, existing replication techniques usually serialize the writes by send-

ing and executing all of them in just a single replica. In our case, this would mean that

once a write hit a cache will have to be propagated to the primary(home) node that is re-

sponsible for executing all of the writes for the specific key, we refer to such protocols

as Primary Broadcast. However, in the presence of skew, which is when replication

is reasonable, serializing the writes on a single node, is even worse than serializing

the reads. This is a consequence of the required costly write actions that have to be

performed to ensure consistency, especially in the case of SC.

Nevertheless, protocols that achieve write serialization through the primary can

be optimized in terms of load balance. Thus, another protocol that we study is the

Primary Timestamp, which accomplishes serialization by requesting a timestamp from

the primary node, and once the timestamp is received from the primary the execution of

write proceeds locally. Such a protocol can evenly spread the costly broadcast actions

of writes across all the replicas.

All Peers Protocol for Distributed Write-Serialization

However, both Primary protocols require extra network hops, which degrade perfor-

mance, especially the Primary Timestamp that balances the load. To avoid those ad-

ditional costs, we developed the All Peers protocol that accomplishes distributed write

serialization, which is inspired by [10, 22] and is implemented via global virtual times-

tamps. In details, every replica maintains a virtual timestamp, which is implemented
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with a version and the node id of the machine that is performing the write to the object.

Furthermore, the timestamp is formed by the concatenation of these two variables. As

a result, two concurrent writes on different machines always have different timestamps,

and thus all the nodes can agree on a single global sequence of writes.

In the case of eventual consistency, this serialization method requires only small

modifications in the execution of writes and updates, as listed in pseudocode 3.1. More

precisely, once a write is performed, the local version is incremented, and the last

writer variable is updated to the local machine id, afterwards the key, the value and the

virtual timestamp (version, machine id) are broadcasted. When an update is received,

is applied only if the received timestamp is higher than the local.

Finally, in contrast with eventual, the strong consistency version of this protocol

is more complicated. Therefore, we provide a more detailed implementation of this

protocol through the state transition matrix 3.4, which is formally verified for correct-

ness. This implementation consists of 5 states and requires only 8 bytes of meta-data

per cached object, which includes the virtual timestamp(5 Bytes), a lock(1 Byte), the

current state(1 Byte) and a field for remaining acknowledgements(1 Byte).

Figure 3.4: State transitions and corresponding executing conditions of All Peers-SC

protocol.
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Listing 3.1: Pseudocode for eventual consistency with distributed write serialization.

p e r f o r m w r i t e ( key , v a l u e ){
l o c k o b j e c t ( key ) ;

w r i t e ( key , v a l u e ) ;

key . t imes t amp . v e r s i o n ++;

key . t imes t amp . l a s t w r i t e r = l o c a l n o d e i d ;

t imes t amp = key . t imes t amp ;

u n l o c k o b j e c t ( key ) ;

b r o a d c a s t u p d a t e ( key , va lue , t imes t amp ) ;

}

p e r f o r m u p d a t e ( key , t imes t amp ){
l o c k o b j e c t ( key ) ;

i f ( key . t imes t amp < t imes t amp ){
w r i t e ( key , v a l u e ) ;

key . t imes t amp = t imes t amp ;

}
u n l o c k o b j e c t ( key ) ;

}

3.4 One Step Further

What about concurrency over synchronization?

Traditional implementations of data-serving applications apply fine-grain locks to han-

dle synchronization. Although this enables any core to process a request for a local

object, it does not allow concurrent requests for the same key to proceed; instead it

serializes them. Consequently, in the presence of skewed accesses, such systems con-

sume multiple cores in order to serve requests for hot keys serially.

However, inside a single node concurrency for an object can be offered through

efficient synchronization methods. Modern data-serving systems [19, 18] utilize op-

timistic concurrency control, allowing concurrent reads and exclusive writes(CREW)

which increase the performance in the presence of skew. Nevertheless, a recent study[35]

argues about the cost of synchronization and proposes to partition the address space in

core granularity instead of a node. Despite the fact that this technique leads to exclu-
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sive reads and exclusive writes(EREW) model, which performs poorly with a skewed

workload, it eliminates the requirement of synchronization. Thus it can achieve better

performance in the ideal case of uniform workloads.

Incremental Concurrency Control

One more benefit of symmetric caching is that it enables the architecture of systems,

with the synchronization scheme, that we call Incremental Concurrency Control. This

attribute achieves the best of both worlds, by exploiting the fact that heavy hitters

are decoupled from the rest of the dataset. Therefore, caches, which are benefited by

concurrent accesses since they serve the hottest keys, utilize optimistic concurrency

control to implement the CREW architecture. On the contrary, the back-end system,

which receives requests only for cold objects, can leverage the core-granularity dataset

partitioning or EREW architecture, similarly to [35], to avoid synchronization costs.

As a result, an item that is initially cold is served fast by a single core without any

synchronization costs, and once its popularity reaches a threshold, it is replicated and

moved on the symmetric caches, that leverage optimistic concurrency control to offer

high concurrency and increase performance.

Is this solution beneficial anywhere else?

The grouping of back-end nodes, enforced with a cache, can provide further perfor-

mance benefits. One existing problem of todays large-scale data serving systems is the

increased number of required connections[17, 18, 39] between the number of clients

and the back-end side since each client needs a connection with every single servicing

node. In symmetric caching, the required connections of a client are one per group

of servers. In other words, a client could be pinned to a single server in the group,

and reduce the number of required connections dramatically. Although from clients

perspective this is similar to the existing solution of Fan et al.[20], it avoids the over-

loading of the machine that holds the cache since different clients can be pinned to

distinct machines that contain identical caches. However, this approach may affect the

parallelism of the requests produced by a single client. Thus, there is a sweet-spot for

choosing the number of connections between a client and a group that provides good

performance and a small number of connections.

Symmetric caching provides additional advantages if the communication between

the clients and the group happens via the costly TCP/IP protocol. This is due to the
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ability of further enforcing the idea of batching multiple key requests into a single

packet. In more details, in a system that supports symmetric caching, requests for a

whole group could be batched in a single packet, in contrast to the common case of

a single server. Finally, this can be even more beneficial in a set-up, where the intra-

group network has higher bandwidth, or it supports RDMA capabilities similar to the

one that RackOut[42] assumes.

Can you optimize Symmetric Caching further?

Although the requests are load balanced across all the nodes of the group, requests

for cold keys that miss in the cache may require being served remotely. However,

this replication approach can become more efficient by a more sophisticated request

dispatching on the client side. Providing that the client can distinguish if a key is hot

or not, which enables better decisions to be made about the destination of a request.

More precisely, hot keys could be equally distributed among the nodes of the group and

served in parallel from caches avoiding hot spots, while cold items could be directly

sent to the home node. This optimization enables, all the request to require at most

one hop, and avoids the probe of cache for cold requests. As a result, this set-up

provides the illusion of a scale-up load balanced component, constituted by a group

of collaborative nodes that serve requests for the most popular keys, while each server

is still responsible for their own cold accesses. Finally, a way to distinguish popular

from cold keys on the client side could be achieved by communicating a bloom filter

per group, at the beginning of each epoch, initialized with the contents of the caches.

Such a bloom filter for 100k keys and with false positive less than 0.1% would cost

around 230KBytes.

3.5 Summary and Comparison with Related Work

In summary, symmetric caching is a skew mitigation technique that load balances and

increases the parallelism of a system, by enforcing every node in the group with an

identical popularity cache. Its symmetry, prevents the formation of hot-spots in the sys-

tem, while it resolves the problem of tracking sharers. Furthermore, it is flexible due

to its ability to adapt, both the cache size and the consistency guarantees, to the occa-

sion. Additionally, this technique can be applied transparently to the clients and boost

performance, exploiting novel replication protocols and synchronization schemes. Fi-



3.5. Summary and Comparison with Related Work 27

nally, symmetric caching can mitigate the problem of required connections and it can

further enhance batching techniques, which offload the costly TCP/IP.

Symmetric caching performs better or equal in all critical aspects, compared to

related work. More accurately, as Table 3.2 summarizes, any deployment of our

technique requires equal or fewer hops than other caching methods, while it avoids

serialization-points, by spreading the load evenly across the nodes of a group. Finally,

Figure 3.5 depicts several benefits that our technique can offer related to skew, which

most of the state-of-the-art solutions, are either missing or performing worse.

Table 3.2: Traditional vs Symmetric Caching

Traditional Caching:
Look-aside

Traditional Caching:
Look -through

Symmetric Caching:
Transparent

Symmetric Caching:
Optimal

Clients responsibilities handle cache misses None None identify if key is hot

Cache load 100% queries 100% queries (100% queries) / servers (Hot queries) / servers

Hops with cache miss 3 machine transits 2 machine transits 2 machine transits* No cache miss

* Latency when both cache and local storage miss.

Figure 3.5: Overview comparison between skew alleviation techniques.
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Evaluation

4.1 Metodology

In this chapter, we evaluate the performance of the three different write serialization

protocols and the impact of transparent Symmetric Caching when it is applied on exist-

ing data-serving systems, without any optimizations such as batching, using discreet-

event simulations. We examine the influence of our technique over different consis-

tency models, workload characteristics, infrastructure, and system settings.

Baselines & Consistency models

We choose to compare both strong and eventual modes of our technique over two state-

of-the-art data-serving architectures, that reside in-memory and leverage low-latency

RDMA communications that avoid the TCP/IP overheads. More precisely, we simu-

late an EREW based model using two-sided RDMA operations, that corresponds to

FaSST [30] or Herd[29] design, which achieves the highest performance on uniform

workloads. On the other hand, we emulate RackOut [40] a state-of-the-art skew mit-

igation method where reads are concurrently served by a group of nodes similarly to

our technique, but instead of replication this technique leverages one-sided RDMA

operations to implement a cross-machine CREW model.

Workloads

We created a trace generator that produces representative workloads, which match the

characteristics of studied large-scale applications. More precisely, the trace generator

provides an accurate trace according to a dataset size, a distribution of data accesses,

29
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request arrival rate, and a particular write ratio. For this evaluation, we created datasets

of 250 million keys, which follow Zipfian data access patterns with exponent a =

0.99 while we vary the write ratio from read-only to 15%, since as we have already

mentioned these workloads are read-intensive.

4.1.1 EUREKA Simulator

To provide insights and evaluate our technique about symmetric caching, we build EU-

REKA a discreet-even simulator for distributed data-serving systems. In more details,

this simulator mimics the operation of a particular system, on a configurable infrastruc-

ture, consisting of distinct nodes and the network that it connects them. Furthermore,

each simulated machine consists of latency and bandwidth operating components, such

as cores (latency), NICs and memory (bandwidth). The internal implementation of

such components is based on queues, and a simulated infrastructure looks similar to

the Figure 4.1.

Figure 4.1: Simulator overview of two nodes, each with N+1 cores, a NIC and memory.

To perform precise simulations, EUREKA gets a trace of requests or operations,

such as GETs and PUTs, a configuration of the infrastructure and a description of a

data-serving system. More precisely, this description maps the real system’s imple-

mentation of such operations, to a series of latency and bandwidth actions, which are

executed by the corresponding components of the simulator. Consequently, the smaller

granularity of actions results into more representative simulations. Therefore, in our
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simulations, each operation usually consists of more than ten primitive actions, where

each one cost was extracted from the literature. For example, serving an operation for

a key that resides on a remote server, is broken into the actions similar to the Figure

4.2.

[ Local_CPU_processing_for_A, Latency_CPU_2_MEM,

Local_Memory_BW_req_for_B, Latency_MEM_2_CPU,

Local_CPU_processing_for_C, Latency_CPU_2_NIC,

Local_NIC_BW_req_for_D, Network_latency,

Remote_NIC_BW_req_for_E, . . ., Local_CPU_processing_for_H ]

Figure 4.2: Simulator actions for a remote operation.

Additionally, EUREKA supports the simulation of the configured systems with or

without the technique of symmetric caching. Where each node is enhanced with a pop-

ularity cache, with configurable size, protocol and consistency actions. Consequently,

we can extract information and argue about the costs of different protocols, and also

compare state-of-the-art systems with our solution.

The simulator is able to provide over-time and average results, for the configured

set-up, in a component, node, and system granularity. Furthermore these results, for

memory, network and cores include metrics like idleness, latency, throughput, utiliza-

tion and the cost of coherence actions in each component, when symmetric caching is

enabled. Finally, the simulator also provides metrics for the requests, such as latency

and read staleness statistics.

4.2 Results

In this section, we first analyse the performance of the three different coherence pro-

tocols, when our technique is applied on both substrates. We then compare the perfor-

mance between pure baseline systems and a system enhanced with Symmetric Caching.

Afterwards, we present three case studies that demonstrate the sensitivity of our tech-

nique based on workload and infrastructure parameters. The evaluation parameters

used for these experiments are summarized in Table 4.1, where in the case of multiple

values the bold value is the default one, which is used unless stated otherwise.
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Table 4.1: Evaluation Parameters

Configuration Parameter Values

Infrastructure

servers 20, 40, 60, 100

cores per server 32

network B/W
10, 40, 56, 100,

200, 400, 560 Gbits/s

memory B/W
⇠35 GBytes/s

(effective B/W of 4 channels)

cache size 250k keys (0.1% of the dataset)

System

baseline / substrate CREW, EREW

symmetric caching on / off

protocol
Primary Broadcast,

Primary Timestamp,

All Peers

consistency Eventual(EC) , Strong(SC)

Workload

write rate 0, 1, 2, 5, 10, 15 %

zipfian exponent 0.99

size 250 Milion keys
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4.2.1 Protocols & Performance of Symmetric Caching

Figure 4.3: Symmetric Caching applied to EREW/CREW substrates, using different

protocols and consistency models (Normalized to CREW - SC: Primary Broadcast).

To quantitatively determine the best coherence protocol for Symmetric Caching,

when it is applied to different substrates, we ran simulations varying the protocols and

the consistency models. Comparing the protocols in Figure 4.3, the Primary Broad-

cast performs worse than the other two, especially on the strong consistency setting.

This is because the home node of each key is responsible for performing the computa-

tional heavy broadcast actions, which consist of multiple phases in strong consistency.

As expected, the primary node of a hot key, which is receiving a lot of writes, be-

comes overloaded and limits the performance of the system. On the contrary, Primary

Timestamp and All Peers are performing the broadcast coherence actions from any

node, avoiding hot-spots. However, Primary Timestamp requires two additional net-

work hops, which degrade its performance, compared to the All Peers protocol, which

achieves write serialization in a distributed manner. Finally, it worth mentioning that

the performance gap between the All Peers and the rest of the protocols would be en-

larged if the evaluation was over TCP/IP protocol where network hops are more costly.

Furthermore, the Figure 4.3 depicts that Symmetric Caching is even more benefi-

cial when it is applied on an EREW substrate system. As it is described earlier, this is

because skew is filtered by the caches then the rest of the accesses for cold items are

sufficiently served in core granularity, where the absence of synchronization overheads

boosts performance.
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In summary, the best configuration according to our results is when Symmetric

Caching is combined with an EREW substrate model and utilizes the All Peers protocol

for the coherency actions. Consequently, in the rest of the results, this setting is used

unless it is stated otherwise, to evaluate and compare against the baselines.

Figure 4.4: Load (im)balance and bottlenecks of systems with(out) symmetric caching.

To provide more insights about the bottlenecks of each system in the presence

of skew, Figure 4.4 summarizes the utilization of the systems’ performance-critical

components. In this graph, the coloured and the thin black bars represent the utilization

of the average, and the range between the least and the most utilized, component in the

system respectively. We can deduce that there is high load imbalance in both baselines

since the black lines span a broad range of values. More precisely, the core utilization

of the EREW baseline stretches over the whole scale, while the average utilization

is below 10%. In other words, the entire system is bottlenecked by a single or small

amount of cores, which are responsible for the hottest keys, while the majority of cores

is operating below 10%.

On the other hand, the CREW baseline has a more balanced core utilization, since

the computational part of the requests is spread among all the servers. This is due to the

use of one-sided RDMA to access the remote data, which does not occupy any CPU

resources on the home node. However, the network traffic is still imbalanced, since

most of the requests are targeting the nodes that are storing the most popular objects.

More accurately, in this scenario the outgoing network traffic from the hottest nodes

is the main bottleneck, since this system’s design fetches multiple remote objects, via

one-sided RDMA accesses, to avoid multiple round trips[18].

On the contrary to the baselines, the system with Symmetric Caching, either on
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eventual or strong consistency setting balances almost perfectly the network traffic,

while keeping the variation of utilization across the cores smaller than the CREW

baseline, even though it is applied on an EREW substrate. This result validates that

symmetric caching achieve load balance and filters the skew by serving hot requests

concurrently from all servers in a group, and that is enabling the saturation of the NICs

in all of the nodes.

Figure 4.5: Performance comparison between native and baselines enhanced with

Symmetric Caching (Normalized to EREW - Baseline).

Consequently, our technique can multiply the performance of existing state-of-the-

art systems. The Figure 4.5, shows that in a read-mostly workload(5x more writes

than what Facebook reports), our technique can empower systems to accomplish ex-

ceptional performance in both eventual and strong consistency. More precisely, the

EREW system enhanced with Symmetric Caching achieves 5.2x and 3.5x over the

CREW baseline, that already attempts to mitigate the skew, and 7.8x and 5.4x over the

EREW baseline, for eventual and strong consistency respectively.

Finally, keeping the consistency for the hottest items, when each one is replicated

20 times, is not a considered a trivial scenario, even with our efficient consistency

maintenance. Thus, Figure 4.1 quantifies the cost of the coherency actions for 5%

writes, both for strong and eventual consistency, where faded and coloured bars corre-

spond to the total and coherence utilization respectively. It is evident from the graph

that the cost of coherence actions is affecting mainly the network bandwidth. More
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Figure 4.6: Average utilization for coherence actions (coloured bars) over the average

total utilization (faded bars).

precisely, the cost in the eventual setting is 45% of the available bandwidth, while it

rises to almost 70% for the strong consistency. Consequently, there is an opportunity to

further increase the performance of the approach by reducing the cost of such actions.

4.2.2 Sensitivity of Symmetric Caching

The performance of our approach is mainly influenced by the write ratio, the available

network bandwidth and the number of replicas (servers in the group). Thus, in order

to examine the behaviour and limits of symmetric caching compared to the native

baselines, we conducted three studies where we vary each of the critical factors.

The first study, depicted in Figure 4.7, is based on available network bandwidth,

which ranges from 10 to 560 Gbit/s. The graph confirms that increasing the network

bandwidth is not affecting the performance of the EREW baseline, which is bottle-

necked by the CPU. Furthermore, the CREW baseline performs steadily worse for

both the EC and SC set-ups of Symmetric Caching, even on the excess bandwidth

configurations, where it achieves 1.75x and 1.5x less throughput respectively. Another

interesting point is that Symmetric Caching-EC achieves saturation on 200 Gbit/s, in

contrast to SC and CREW baseline, which requires double the bandwidth, due to costly

actions on writes and load imbalances respectively. Finally, it worth noticing that the

performance difference between the EC and SC is quite small when they have both

reached their peak, which implies that their performance difference is heavily influ-
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Figure 4.7: Study of baselines and symmetric caching to network bandwidth (Normal-

ized to EREW - Baseline: 10 Gbit/s).

enced by the lack of network bandwidth.

The Figure 4.8 evaluates the sensitivity of the systems in the presence of different

write ratios, which we varied from 0 to 15%. This graph illustrates that the CREW

baseline slightly increases performance, in contrast to the EREW that is unaffected, as

the write ratio rises. This is due to the lower cost of writes regarding network band-

width in the case of the CREW model. Moreover, we see that the strong consistency

setting of symmetric caching for this configuration is beneficial with write ratios be-

low 10%. On the other hand, the eventual set-up, even on 15% writes, is still achieving

almost 1.5x compared to the performance of the best baseline.

Finally, the scalability of the baselines and our approach in the presence of skew is

illustrated in Figure 4.9, where we vary the number of servers, which also correspond

to the quantity of replicas, from 20 to 100. Where the strong consistency variant of

Symmetric Caching is not scaling beyond the 40 servers similarly to the EREW base-

line, however, it still achieves better performance than the leading baseline. On the

contrary, Symmetric Caching with eventual consistency is scaling quite well achieving

9x and almost 3.5x from EREW and CREW baseline respectively.
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Figure 4.8: Sensitivity of baselines and symmetric caching to write ratio (Normalized to

EREW - Baseline: 0% writes).

4.3 Summary

In summary, deploying an efficient protocol such as All Peers can significantly increase

the effectiveness of our technique, even on low write rates. Additionally, we provided

evidence that EREW can not tolerate skew, and that CREW mitigates the load imbal-

ance from the CPU, but it can not accomplish the same for the network. However,

when our technique is applied, even on an EREW substrate, load balance in all three

major components, is ensured. Consequently, when the baselines are enforced with

Symmetric Caching, they can achieve up to 7.8x and 5.4x increase in their initial per-

formance, with EC and SC respectively. Based on the sensitivity studies, our technique

can tolerate write ratios almost up to 10% for SC and more than 15% for EC, and still

be advantageous. Finally, the studies revealed that Symmetric Caching remains benefi-

cial as the network bandwidth or the number of servers increases, while the EC further

enforces the scalability of the system.
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Figure 4.9: Scalability comparison between symmetric caching and baselines in terms

of servers (Normalized to EREW - Baseline: 20 servers).





Chapter 5

Conclusions and Future Work

This thesis proposed and evaluated Symmetric Caching, a novel technique that com-

bines the best of caching and replication, to mitigate skew of large-scale applications

and increase the performance of data-serving systems. To achieve that, network ineffi-

ciencies, workload characteristics, and system considerations were taken into account,

while the main focus was laid on replication and synchronization.

To provide consistency over non-trivial scenarios of replication, we designed and

implemented protocols that load balance the consistency actions over all the replicas

of an object, by offering distributed write-serialization that avoid costly network round

trips. We provided evidence that such protocols can significantly increase the perfor-

mance over the traditional protocols, especially on strong consistency setting where

they can achieve more than 2x increase in a scenario of just 5% writes.

We show that although synchronization across machines is able to increase the con-

currency, is not as effective as replication, even when they are applied over low-latency

networks. However, the intra-node synchronization matters and thus we proposed In-

cremental Concurrency Control. A new synchronization scheme, that according to

the online demand, an object can be either accessed by avoiding any synchronization

overheads or through the optimal synchronization method of optimistic concurrency

control.

Through the discreet-event simulator that we build, we proved that symmetric

caching can almost perfectly balance the load among the nodes and achieve numerous

times the performance of state-of-the-art systems that take skew into consideration,

both in eventual and strong consistency setting. Additionally, we provided evidence

that our approach remains beneficial in the excess of network bandwidth and increases

the scalability of existing systems.

41
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Finally, despite the fact that Symmetric Caching is able to balance the load and

offer the performance of existing systems multiple times, there is plenty of space for

improvements. Motivated by the results of the simulator, reducing the cost of consis-

tency actions seems promising to boost the performance of the approach further and

close the gap between strong and eventual consistency. A direction to achieve this is to

leverage the hardware, either by exploiting existing multicast capabilities of switches

to propagate the broadcast actions or by totally implementing the consistency protocols

into FPGAs. Lastly, another interesting path for future research is to study the impli-

cation of system failures into the approach and increase its fault tolerance, possibly

through the use of non-volatile memory.
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